345 research outputs found

    On the Singular Neumann Problem in Linear Elasticity

    Full text link
    The Neumann problem of linear elasticity is singular with a kernel formed by the rigid motions of the body. There are several tricks that are commonly used to obtain a non-singular linear system. However, they often cause reduced accuracy or lead to poor convergence of the iterative solvers. In this paper, different well-posed formulations of the problem are studied through discretization by the finite element method, and preconditioning strategies based on operator preconditioning are discussed. For each formulation we derive preconditioners that are independent of the discretization parameter. Preconditioners that are robust with respect to the first Lam\'e constant are constructed for the pure displacement formulations, while a preconditioner that is robust in both Lam\'e constants is constructed for the mixed formulation. It is shown that, for convergence in the first Sobolev norm, it is crucial to respect the orthogonality constraint derived from the continuous problem. Based on this observation a modification to the conjugate gradient method is proposed that achieves optimal error convergence of the computed solution

    A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations

    Get PDF
    We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners

    Classical and all-floating FETI methods for the simulation of arterial tissues

    Full text link
    High-resolution and anatomically realistic computer models of biological soft tissues play a significant role in the understanding of the function of cardiovascular components in health and disease. However, the computational effort to handle fine grids to resolve the geometries as well as sophisticated tissue models is very challenging. One possibility to derive a strongly scalable parallel solution algorithm is to consider finite element tearing and interconnecting (FETI) methods. In this study we propose and investigate the application of FETI methods to simulate the elastic behavior of biological soft tissues. As one particular example we choose the artery which is - as most other biological tissues - characterized by anisotropic and nonlinear material properties. We compare two specific approaches of FETI methods, classical and all-floating, and investigate the numerical behavior of different preconditioning techniques. In comparison to classical FETI, the all-floating approach has not only advantages concerning the implementation but in many cases also concerning the convergence of the global iterative solution method. This behavior is illustrated with numerical examples. We present results of linear elastic simulations to show convergence rates, as expected from the theory, and results from the more sophisticated nonlinear case where we apply a well-known anisotropic model to the realistic geometry of an artery. Although the FETI methods have a great applicability on artery simulations we will also discuss some limitations concerning the dependence on material parameters.Comment: 29 page

    Voxel‐based finite elements with hourglass control in fast Fourier transform‐based computational homogenization

    Get PDF
    The power of fast Fourier transform (FFT)-based methods in computational micromechanics critically depends on a seamless integration of discretization scheme and solution method. In contrast to solution methods, where options are available that are fast, robust and memory-efficient at the same time, choosing the underlying discretization scheme still requires the user to make compromises. Discretizations with trigonometric polynomials suffer from spurious oscillations in the solution fields and lead to ill-conditioned systems for complex porous materials, but come with rather accurate effective properties for finitely contrasted materials. The staggered grid discretization, a finite-volume scheme, is devoid of bulk artifacts in the solution fields and works robustly for porous materials, but does not handle anisotropic materials in a natural way. Fully integrated finite-element discretizations share the advantages of the staggered grid, but involve a higher memory footprint, require a higher computational effort due to the increased number of integration points and typically overestimate the effective properties. Most widely used is the rotated staggered grid discretization, which may also be viewed as an underintegrated trilinear finite element discretization, which does not impose restrictions on the constitutive law, has fewer artifacts than Fourier-type discretizations and leads to rather accurate effective properties. However, this discretization comes with two downsides. For a start, checkerboard artifacts are still present. Second, convergence problems occur for complex porous microstructures. The work at hand introduces FFT-based solution techniques for underintegrated trilinear finite elements with hourglass control. The latter approach permits to suppress local hourglass modes, which stabilizes the convergence behavior of the solvers for porous materials and removes the checkerboards from the local solution field. Moreover, the hourglass-control parameter can be adjusted to “soften” the material response compared to fully integrated elements, using only a single integration point for nonlinear analyses at the same time. To be effective, the introduced technology requires a displacement-based implementation. The article exposes an efficient way for doing so, providing minimal interfaces to the most commonly used solution techniques and the appropriate convergence criterion

    Schnelle Löser fĂŒr Partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Löser fĂŒr partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch (Leipzig), and Gabriel Wittum (Frankfurt am Main), was held May 22nd–May 28th, 2011. This meeting was well attended by 54 participants with broad geographic representation from 7 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds

    Computational Engineering

    Get PDF
    The focus of this Computational Engineering Workshop was on the mathematical foundation of state-of-the-art and emerging finite element methods in engineering analysis. The 52 participants included mathematicians and engineers with shared interest on discontinuous Galerkin or Petrov-Galerkin methods and other generalized nonconforming or mixed finite element methods

    An EigenValue Stabilization Technique for Immersed Boundary Finite Element Methods in Explicit Dynamics

    Full text link
    The application of immersed boundary methods in static analyses is often impeded by poorly cut elements (small cut elements problem), leading to ill-conditioned linear systems of equations and stability problems. While these concerns may not be paramount in explicit dynamics, a substantial reduction in the critical time step size based on the smallest volume fraction χ\chi of a cut element is observed. This reduction can be so drastic that it renders explicit time integration schemes impractical. To tackle this challenge, we propose the use of a dedicated eigenvalue stabilization (EVS) technique. The EVS-technique serves a dual purpose. Beyond merely improving the condition number of system matrices, it plays a pivotal role in extending the critical time increment, effectively broadening the stability region in explicit dynamics. As a result, our approach enables robust and efficient analyses of high-frequency transient problems using immersed boundary methods. A key advantage of the stabilization method lies in the fact that only element-level operations are required. This is accomplished by computing all eigenvalues of the element matrices and subsequently introducing a stabilization term that mitigates the adverse effects of cutting. Notably, the stabilization of the mass matrix Mc\mathbf{M}_\mathrm{c} of cut elements -- especially for high polynomial orders pp of the shape functions -- leads to a significant raise in the critical time step size Δtcr\Delta t_\mathrm{cr}. To demonstrate the efficacy of our technique, we present two specifically selected dynamic benchmark examples related to wave propagation analysis, where an explicit time integration scheme must be employed to leverage the increase in the critical time step size.Comment: 45 pages, 25 figure
    • 

    corecore