281 research outputs found

    Persistent Memory File Systems:A Survey

    Get PDF
    Persistent Memory (PM) is non-volatile byte-addressable memory that offers read and write latencies in the order of magnitude smaller than flash storage, such as SSDs. This survey discusses how file systems address the most prominent challenges in the implementation of file systems for Persistent Memory. First, we discuss how the properties of Persistent Memory change file system design. Second, we discuss work that aims to optimize small file I/O and the associated meta-data resolution. Third, we address how existing Persistent Memory file systems achieve (meta) data persistence and consistency

    Improving the Performance and Endurance of Persistent Memory with Loose-Ordering Consistency

    Full text link
    Persistent memory provides high-performance data persistence at main memory. Memory writes need to be performed in strict order to satisfy storage consistency requirements and enable correct recovery from system crashes. Unfortunately, adhering to such a strict order significantly degrades system performance and persistent memory endurance. This paper introduces a new mechanism, Loose-Ordering Consistency (LOC), that satisfies the ordering requirements at significantly lower performance and endurance loss. LOC consists of two key techniques. First, Eager Commit eliminates the need to perform a persistent commit record write within a transaction. We do so by ensuring that we can determine the status of all committed transactions during recovery by storing necessary metadata information statically with blocks of data written to memory. Second, Speculative Persistence relaxes the write ordering between transactions by allowing writes to be speculatively written to persistent memory. A speculative write is made visible to software only after its associated transaction commits. To enable this, our mechanism supports the tracking of committed transaction ID and multi-versioning in the CPU cache. Our evaluations show that LOC reduces the average performance overhead of memory persistence from 66.9% to 34.9% and the memory write traffic overhead from 17.1% to 3.4% on a variety of workloads.Comment: This paper has been accepted by IEEE Transactions on Parallel and Distributed System

    Leveraging Non-Volatile Memory in Modern Storage Management Architectures

    Get PDF
    Non-volatile memory technologies (NVM) introduce a novel class of devices that combine characteristics of both storage and main memory. Like storage, NVM is not only persistent, but also denser and cheaper than DRAM. Like DRAM, NVM is byte-addressable and has lower access latency. In recent years, NVM has gained a lot of attention both in academia and in the data management industry, with views ranging from skepticism to over excitement. Some critics claim that NVM is not cheap enough to replace flash-based SSDs nor is it fast enough to replace DRAM, while others see it simply as a storage device. Supporters of NVM have observed that its low latency and byte-addressability requires radical changes and a complete rewrite of storage management architectures. This thesis takes a moderate stance between these two views. We consider that, while NVM might not replace flash-based SSD or DRAM in the near future, it has the potential to reduce the gap between them. Furthermore, treating NVM as a regular storage media does not fully leverage its byte-addressability and low latency. On the other hand, completely redesigning systems to be NVM-centric is impractical. Proposals that attempt to leverage NVM to simplify storage management result in completely new architectures that face the same challenges that are already well-understood and addressed by the traditional architectures. Therefore, we take three common storage management architectures as a starting point, and propose incremental changes to enable them to better leverage NVM. First, in the context of log-structured merge-trees, we investigate the impact of storing data in NVM, and devise methods to enable small granularity accesses and NVM-aware caching policies. Second, in the context of B+Trees, we propose to extend the buffer pool and describe a technique based on the concept of optimistic consistency to handle corrupted pages in NVM. Third, we employ NVM to enable larger capacity and reduced costs in a index+log key-value store, and combine it with other techniques to build a system that achieves low tail latency. This thesis aims to describe and evaluate these techniques in order to enable storage management architectures to leverage NVM and achieve increased performance and lower costs, without major architectural changes.:1 Introduction 1.1 Non-Volatile Memory 1.2 Challenges 1.3 Non-Volatile Memory & Database Systems 1.4 Contributions and Outline 2 Background 2.1 Non-Volatile Memory 2.1.1 Types of NVM 2.1.2 Access Modes 2.1.3 Byte-addressability and Persistency 2.1.4 Performance 2.2 Related Work 2.3 Case Study: Persistent Tree Structures 2.3.1 Persistent Trees 2.3.2 Evaluation 3 Log-Structured Merge-Trees 3.1 LSM and NVM 3.2 LSM Architecture 3.2.1 LevelDB 3.3 Persistent Memory Environment 3.4 2Q Cache Policy for NVM 3.5 Evaluation 3.5.1 Write Performance 3.5.2 Read Performance 3.5.3 Mixed Workloads 3.6 Additional Case Study: RocksDB 3.6.1 Evaluation 4 B+Trees 4.1 B+Tree and NVM 4.1.1 Category #1: Buffer Extension 4.1.2 Category #2: DRAM Buffered Access 4.1.3 Category #3: Persistent Trees 4.2 Persistent Buffer Pool with Optimistic Consistency 4.2.1 Architecture and Assumptions 4.2.2 Embracing Corruption 4.3 Detecting Corruption 4.3.1 Embracing Corruption 4.4 Repairing Corruptions 4.5 Performance Evaluation and Expectations 4.5.1 Checksums Overhead 4.5.2 Runtime and Recovery 4.6 Discussion 5 Index+Log Key-Value Stores 5.1 The Case for Tail Latency 5.2 Goals and Overview 5.3 Execution Model 5.3.1 Reactive Systems and Actor Model 5.3.2 Message-Passing Communication 5.3.3 Cooperative Multitasking 5.4 Log-Structured Storage 5.5 Networking 5.6 Implementation Details 5.6.1 NVM Allocation on RStore 5.6.2 Log-Structured Storage and Indexing 5.6.3 Garbage Collection 5.6.4 Logging and Recovery 5.7 Systems Operations 5.8 Evaluation 5.8.1 Methodology 5.8.2 Environment 5.8.3 Other Systems 5.8.4 Throughput Scalability 5.8.5 Tail Latency 5.8.6 Scans 5.8.7 Memory Consumption 5.9 Related Work 6 Conclusion Bibliography A PiBenc

    Redesigning Transaction Processing Systems for Non-Volatile Memory

    Get PDF
    Department of Computer Science and EngineeringTransaction Processing Systems are widely used because they make the user be able to manage their data more efficiently. However, they suffer performance bottleneck due to the redundant I/O for guaranteeing data consistency. In addition to the redundant I/O, slow storage device makes the performance more degraded. Leveraging non-volatile memory is one of the promising solutions the performance bottleneck in Transaction Processing Systems. However, since the I/O granularity of legacy storage devices and non-volatile memory is not equal, traditional Transaction Processing System cannot fully exploit the performance of persistent memory. The goal of this dissertation is to fully exploit non-volatile memory for improving the performance of Transaction Processing Systems. Write amplification between Transaction Processing System is pointed out as a performance bottleneck. As first approach, we redesigned Transaction Processing Systems to minimize the redundant I/O between the Transaction Processing Systems. We present LS-MVBT that integrates recovery information into the main database file to remove temporary files for recovery. The LS-MVBT also employs five optimizations to reduce the write traffics in single fsync() calls. We also exploit the persistent memory to reduce the performance bottleneck from slow storage devices. However, since the traditional recovery method is for slow storage devices, we develop byte-addressable differential logging, user-level heap manager, and transaction-aware persistence to fully exploit the persistent memory. To minimize the redundant I/O for guarantee data consistency, we present the failure-atomic slotted paging with persistent buffer cache. Redesigning indexing structure is the second approach to exploit the non-volatile memory fully. Since the B+-tree is originally designed for block granularity, It generates excessive I/O traffics in persistent memory. To mitigate this traffic, we develop cache line friendly B+-tree which aligns its node size to cache line size. It can minimize the write traffic. Moreover, with hardware transactional memory, it can update its single node atomically without any additional redundant I/O for guaranteeing data consistency. It can also adapt Failure-Atomic Shift and Failure-Atomic In-place Rebalancing to eliminate unnecessary I/O. Furthermore, We improved the persistent memory manager that exploit traditional memory heap structure with free-list instead of segregated lists for small memory allocations to minimize the memory allocation overhead. Our performance evaluation shows that our improved version that consider I/O granularity of non-volatile memory can efficiently reduce the redundant I/O traffic and improve the performance by large of a margin.ope

    Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree

    Get PDF
    Department of Computer Science and EngineeringWith the emergence of byte-addressable persistent memory (PM), a cache line, instead of a page, is expected to be the unit of data transfer between volatile and non-volatile devices, but the failure-atomicity of write operations is guaranteed in the granularity of 8 bytes rather than cache lines. This granularity mismatch problem has generated interest in redesigning block-based data structures such as B+-trees. However, various methods of modifying B+-trees for PM degrade the efficiency of B+-trees, and attempts have been made to use in-memory data structures for PM. In this study, we develop Failure-Atomic ShifT (FAST) and Failure-Atomic In-place Rebalance (FAIR) algorithms to resolve the granularity mismatch problem. Every 8-byte store instruction used in the FAST and FAIR algorithms transforms a B+-tree into another consistent state or a {\it transient inconsistent} state that read operations can tolerate. By making read operations tolerate transient inconsistency, we can avoid expensive copy-on-write, logging, and even the necessity of read latches so that read transactions can be non-blocking. Our experimental results show that legacy B+-trees with FAST and FAIR schemes outperform the state-of-the-art persistent indexing structures by a large margin.clos
    corecore