933 research outputs found

    Quantum Markov Channels for Qubits

    Get PDF
    We examine stochastic maps in the context of quantum optics. Making use of the master equation, the damping basis, and the Bloch picture we calculate a non-unital, completely positive, trace-preserving map with unequal damping eigenvalues. This results in what we call the squeezed vacuum channel. A geometrical picture of the effect of stochastic noise on the set of pure state qubit density operators is provided. Finally, we study the capacity of the squeezed vacuum channel to transmit quantum information and to distribute EPR states.Comment: 18 pages, 4 figure

    Atom correlations and spin squeezing near the Heisenberg limit: finite system size effect and decoherence

    Full text link
    We analyze a model for spin squeezing based on the so-called counter-twisting Hamiltonian, including the effects of dissipation and finite system size. We discuss the conditions under which the Heisenberg limit, i.e. phase sensitivity 1/N\propto 1/N, can be achieved. A specific implementation of this model based on atom-atom interactions via quantized photon exchange is presented in detail. The resulting excitation corresponds to the creation of spin-flipped atomic pairs and can be used for fast generation of entangled atomic ensembles, spin squeezing and apllications in quantum information processing. The conditions for achieving strong spin squeezing with this mechanism are also analyzed.Comment: 15 pages, 8 figure
    corecore