3,358 research outputs found

    Two-hop power-relaying for linear wireless sensor networks

    Full text link
    © 2016 IEEE. This paper presents two-hop relay gain-scheduling control in a Wireless Sensor Network to estimate a static target prior characterized by Gaussian probability distribution. The target is observed by a network of linear sensors, whose observations are transmitted to a fusion center for carrying out final estimation via a amplify-And-forward relay node. We are concerned with the joint transmission power allocation for sensors and relay to optimize the minimum mean square error (MMSE) estimator, which is deployed at the fusion center. Particularly, such highly nonlinear optimization problems are solved by an iterative procedure of very low computational complexity. Simulations are provided to support the efficiency of our proposed power allocation

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme

    Characterization of the on-body path Loss at 2.45 GHz and energy efficient WBAN design for dairy cows

    Get PDF
    Wireless body area networks (WBANs) provide promising applications in the healthcare monitoring of dairy cows. The characterization of the path loss (PL) between on-body nodes constitutes an important step in the deployment of a WBAN. In this paper, the PL between nodes placed on the body of a dairy cow was determined at 2.45 GHz. Finite-difference time domain simulations with two half-wavelength dipoles placed 20 mm above a cow model were performed using a 3-D electromagnetic solver. Measurements were conducted on a live cow to validate the simulation results. Excellent agreement between measurements and simulations was achieved and the obtained PL values as a function of the transmitter-receiver separation were well fitted by a lognormal PL model with a PL exponent of 3.1 and a PL at reference distance ( 10 cm) of 44 dB. As an application, the packet error rate ( PER) and the energy efficiency of different WBAN topologies for dairy cows (i.e., single-hop, multihop, and cooperative networks) were investigated. The analysis results revealed that exploiting multihop and cooperative communication schemes decrease the PER and increase the optimal payload packet size. The analysis results revealed that exploiting multihop and cooperative communication schemes increase the optimal payload packet size and improve the energy efficiency by 30%
    corecore