1,396 research outputs found

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance

    Stereoscopic bimanual interaction for 3D visualization

    Get PDF
    Virtual Environments (VE) are being widely used in various research fields for several decades such as 3D visualization, education, training and games. VEs have the potential to enhance the visualization and act as a general medium for human-computer interaction (HCI). However, limited research has evaluated virtual reality (VR) display technologies, monocular and binocular depth cues, for human depth perception of volumetric (non-polygonal) datasets. In addition, a lack of standardization of three-dimensional (3D) user interfaces (UI) makes it challenging to interact with many VE systems. To address these issues, this dissertation focuses on evaluation of effects of stereoscopic and head-coupled displays on depth judgment of volumetric dataset. It also focuses on evaluation of a two-handed view manipulation techniques which support simultaneous 7 degree-of-freedom (DOF) navigation (x,y,z + yaw,pitch,roll + scale) in a multi-scale virtual environment (MSVE). Furthermore, this dissertation evaluates auto-adjustment of stereo view parameters techniques for stereoscopic fusion problems in a MSVE. Next, this dissertation presents a bimanual, hybrid user interface which combines traditional tracking devices with computer-vision based "natural" 3D inputs for multi-dimensional visualization in a semi-immersive desktop VR system. In conclusion, this dissertation provides a guideline for research design for evaluating UI and interaction techniques

    An Empirical Evaluation of Visual Cues for 3D Flow Field Perception

    Get PDF
    Three-dimensional vector fields are common datasets throughout the sciences. They often represent physical phenomena that are largely invisible to us in the real world, like wind patterns and ocean currents. Computer-aided visualization is a powerful tool that can represent data in any way we choose through digital graphics. Visualizing 3D vector fields is inherently difficult due to issues such as visual clutter, self-occlusion, and the difficulty of providing depth cues that adequately support the perception of flow direction in 3D space. Cutting planes are often used to overcome these issues by presenting slices of data that are more cognitively manageable. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. The most valuable depth cue for the perception of other kinds of 3D data, notably 3D networks and 3D point clouds, is structure-from-motion (also called the Kinetic Depth Effect); another powerful depth cue is stereoscopic viewing, but none of these cues have been fully examined in the context of flow visualization. This dissertation presents a series of quantitative human factors studies that evaluate depth and direction cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The results of the studies are distilled into a set of design guidelines to improve the effectiveness of 3D flow field visualizations, and those guidelines are implemented as an immersive, interactive 3D flow visualization proof-of-concept application

    Head-tracked stereo viewing with two-handed 3D interaction for animated character construction

    Get PDF
    In this paper, we demonstrate a new interactive 3D desktop metaphor based on two-handed 3D direct manipulation registered with head-tracked stereo viewing. In our configuration, a six-degree-of-freedom head-tracker and CrystalEyes shutter glasses are used to produce stereo images that dynamically follow the user head motion. 3D virtual objects can be made to appear at a fixed location in physical space which the user may view from different angles by moving his head. The user interacts with the simulated 3D environment using both hands simultaneously. The left hand, controlling a Spaceball, is used for 3D navigation and object movement, while the right hand, holding a 3D mouse, is used to manipulate through a virtual tool metaphor, the objects appearing in front of the screen because of negative parallax. In this way, both incremental and absolute interactive input techniques are provided by the system. Hand-eye coordination is made possible by registration between virtual and physical space, allowing a variety of complex 3D tasks to be performed more easily and more rapidly than is possible using traditional interactive techniques. The system has been tested using both Polhemus Fastrak and Logitech ultrasonic input devices for tracking the head and 3D mouse.197-206Pubblicat

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices

    Exploring individual user differences in the 2D/3D interaction with medical image data

    Get PDF
    User-centered design is often performed without regard to individual user differences. In this paper, we report results of an empirical study aimed to evaluate whether computer experience and demographic user characteristics would have an effect on the way people interact with the visualized medical data in a 3D virtual environment using 2D and 3D input devices. We analyzed the interaction through performance data, questionnaires and observations. The results suggest that differences in gender, age and game experience have an effect on people’s behavior and task performance, as well as on subjective\ud user preferences

    Virtual Valcamonica: collaborative exploration of prehistoric petroglyphs and their surrounding environment in multi-user virtual reality

    Get PDF
    In this paper, we present a novel, multi-user, virtual reality environment for the interactive, collaborative 3D analysis of large 3D scans and the technical advancements that were necessary to build it: a multi-view rendering system for large 3D point clouds, a suitable display infrastructure and a suite of collaborative 3D interaction techniques. The cultural heritage site of Valcamonica in Italy with its large collection of prehistoric rock-art served as an exemplary use case for evaluation. The results show that our output-sensitive level-of-detail rendering system is capable of visualizing a 3D dataset with an aggregate size of more than 14 billion points at interactive frame rates. The system design in this exemplar application results from close exchange with a small group of potential users: archaeologists with expertise in rock-art and allows them to explore the prehistoric art and its spatial context with highly realistic appearance. A set of dedicated interaction techniques was developed to facilitate collaborative visual analysis. A multi-display workspace supports the immediate comparison of geographically distributed artifacts. An expert review of the final demonstrator confirmed the potential for added value in rock-art research and the usability of our collaborative interaction techniques

    2D Versus 3D: The Relevance of the Mode of Presentation for the Economic Valuation of an Alpine Landscape

    Get PDF
    In order to value the transformation of landscapes from an economic perspective, survey respondents are usually presented with pictures of various landscapes with the aim to visualize differences in their appearance. The current paper presents a classroom experiment ascertaining differences, and potential advantages and disadvantages, of 2D versus 3D (stereoscopic) presentations of landscape changes. The landscape to be valued was a traditional Alpine pasture in the Austrian Alps as a prominent example of natural and cultural heritage (traditional economy and specific ecology). Two alternative scenarios included, on the one hand, changes in agricultural uses, leading to natural afforestation (reforestation) and decay of existing infrastructure (e.g., hiking trails). On the other hand, significantly extended tourism infrastructure (e.g., new attractions for visitors) was presented. Two groups were presented manipulated pictures (2D/non-stereoscopic), and 3D (stereoscopic) presentations with 3D glasses, respectively. Both groups were then asked for their perception of landscape changes. It turns out that significant differences between the two groups could be detected in terms of the frequency of vacations at Alpine pastures. For instance, respondents in the 3D stereoscopic group stated a significantly higher frequency of trips. However, on the other hand, they did not state a significantly different willingness-to-pay to prevent landscape changes disadvantageous in terms of sustainability. The study results thus suggest that the mode of presentation may affect the valuation of landscape changes depending on the valuation instrument
    corecore