545 research outputs found

    Sharp error estimates for spline approximation: explicit constants, nn-widths, and eigenfunction convergence

    Full text link
    In this paper we provide a priori error estimates in standard Sobolev (semi-)norms for approximation in spline spaces of maximal smoothness on arbitrary grids. The error estimates are expressed in terms of a power of the maximal grid spacing, an appropriate derivative of the function to be approximated, and an explicit constant which is, in many cases, sharp. Some of these error estimates also hold in proper spline subspaces, which additionally enjoy inverse inequalities. Furthermore, we address spline approximation of eigenfunctions of a large class of differential operators, with a particular focus on the special case of periodic splines. The results of this paper can be used to theoretically explain the benefits of spline approximation under kk-refinement by isogeometric discretization methods. They also form a theoretical foundation for the outperformance of smooth spline discretizations of eigenvalue problems that has been numerically observed in the literature, and for optimality of geometric multigrid solvers in the isogeometric analysis context.Comment: 31 pages, 2 figures. Fixed a typo. Article published in M3A

    Mini-Workshop: Adaptive Methods for Control Problems Constrained by Time-Dependent PDEs

    Get PDF
    Optimization problems constrained by time-dependent PDEs (Partial Differential Equations) are challenging from a computational point of view: even in the simplest case, one needs to solve a system of PDEs coupled globally in time and space for the unknown solutions (the state, the costate and the control of the system). Typical and practically relevant examples are the control of nonlinear heat equations as they appear in laser hardening or the thermic control of flow problems (Boussinesq equations). Specifically for PDEs with a long time horizon, conventional time-stepping methods require an enormous storage of the respective other variables. In contrast, adaptive methods aim at distributing the available degrees of freedom in an a-posteriori-fashion to capture singularities and are, therefore, most promising

    A radial basis function method for solving optimal control problems.

    Get PDF
    This work presents two direct methods based on the radial basis function (RBF) interpolation and arbitrary discretization for solving continuous-time optimal control problems: RBF Collocation Method and RBF-Galerkin Method. Both methods take advantage of choosing any global RBF as the interpolant function and any arbitrary points (meshless or on a mesh) as the discretization points. The first approach is called the RBF collocation method, in which states and controls are parameterized using a global RBF, and constraints are satisfied at arbitrary discrete nodes (collocation points) to convert the continuous-time optimal control problem to a nonlinear programming (NLP) problem. The resulted NLP is quite sparse and can be efficiently solved by well-developed sparse solvers. The second proposed method is a hybrid approach combining RBF interpolation with Galerkin error projection for solving optimal control problems. The proposed solution, called the RBF-Galerkin method, applies a Galerkin projection to the residuals of the optimal control problem that make them orthogonal to every member of the RBF basis functions. Also, RBF-Galerkin costate mapping theorem will be developed describing an exact equivalency between the Karush–Kuhn–Tucker (KKT) conditions of the NLP problem resulted from the RBF-Galerkin method and discretized form of the first-order necessary conditions of the optimal control problem, if a set of conditions holds. Several examples are provided to verify the feasibility and viability of the RBF method and the RBF-Galerkin approach as means of finding accurate solutions to general optimal control problems. Then, the RBF-Galerkin method is applied to a very important drug dosing application: anemia management in chronic kidney disease. A multiple receding horizon control (MRHC) approach based on the RBF-Galerkin method is developed for individualized dosing of an anemia drug for hemodialysis patients. Simulation results are compared with a population-oriented clinical protocol as well as an individual-based control method for anemia management to investigate the efficacy of the proposed method

    Space-Time Isogeometric Analysis of Parabolic Evolution Equations

    Full text link
    We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces

    Multigrid methods and stationary subdivisions

    Get PDF
    Multigridmethods are fast iterative solvers for sparse large ill-conditioned linear systems of equations derived, for instance, via discretization of PDEs in fluid dynamics, electrostatics and continuummechanics problems. Subdivision schemes are simple iterative algorithms for generation of smooth curves and surfaces with applications in 3D computer graphics and animation industry. This thesis presents the first definition and analysis of subdivision based multigrid methods. The main goal is to improve the convergence rate and the computational cost of multigrid taking advantage of the reproduction and regularity properties of underlying subdivision. The analysis focuses on the grid transfer operators appearing at the coarse grid correction step in the multigrid procedure. The convergence of multigrid is expressed in terms of algebraic properties of the trigonometric polynomial associated to the grid transfer operator. We interpreter the coarse-to-fine grid transfer operator as one step of subdivision. We reformulate the algebraic properties ensuring multigrid convergence in terms of regularity and generation properties of subdivision. The theoretical analysis is supported by numerical experiments for both algebraic and geometric multigrid. The numerical tests with the bivariate anisotropic Laplacian ask for subdivision schemes with anisotropic dilation. We construct a family of interpolatory subdivision schemes with such dilation which are optimal in terms of the size of the support versus their polynomial generation properties. The numerical tests confirmthe validity of our theoretical analysis

    Parabolic PDEs in Space-Time Formulations: Stability for Petrov-Galerkin Discretizations with B-Splines and Existence of Moments for Problems with Random Coefficients

    Get PDF
    The topic of this thesis contains influences of numerical mathematics, functional analysis and approximation theory, as well as stochastic respectively uncertainty quantification. The focus is beside the full space-time weak formulation of linear parabolic partial differential equations and their properties, especially the stability of their Petrov-Galerkin approximations. Moreover, the concept of space-time weak formulations is extended to parabolic differential equations with random coefficients, where an additional central aspect of this thesis is the existence of moments of the solution and the optimality of its Petrov-Galerkin solution. In the scope of this work a Matlab code for the numerical realization of the Petrov-Galerkin approximation with B-splines of arbitrary order was developed
    • …
    corecore