362 research outputs found

    A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    Get PDF
    Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex states: an imaginary time propagation method and a Sobolev gradient descent method. We first address the basic issue of the choice of the variable used to compute new metrics for the mesh adaptivity and show that simultaneously refinement using the real and imaginary part of the solution is successful. Mesh refinement using only the modulus of the solution as adaptivity variable fails for complicated test cases. Then we suggest an optimized algorithm for adapting the mesh during the evolution of the solution towards the equilibrium state. Considerable computational time saving is obtained compared to uniform mesh computations. The new method is applied to compute difficult cases relevant for physical experiments (large nonlinear interaction constant and high rotation rates).Comment: to appear in J. Computational Physic

    The Finite Element Method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation

    Get PDF
    We consider the time-dependent Gross-Pitaevskii equation describing the dynamics of rotating Bose-Einstein condensates and its discretization with the finite element method. We analyze a mass conserving Crank-Nicolson-type discretization and prove corresponding a priori error estimates with respect to the maximum norm in time and the L2L^2- and energy-norm in space. The estimates show that we obtain optimal convergence rates under the assumption of additional regularity for the solution to the Gross-Pitaevskii equation. We demonstrate the performance of the method in numerical experiments

    Mean-square stability and error analysis of implicit time-stepping schemes for linear parabolic SPDEs with multiplicative Wiener noise in the first derivative

    Full text link
    In this article, we extend a Milstein finite difference scheme introduced in [Giles & Reisinger(2011)] for a certain linear stochastic partial differential equation (SPDE), to semi- and fully implicit timestepping as introduced by [Szpruch(2010)] for SDEs. We combine standard finite difference Fourier analysis for PDEs with the linear stability analysis in [Buckwar & Sickenberger(2011)] for SDEs, to analyse the stability and accuracy. The results show that Crank-Nicolson timestepping for the principal part of the drift with a partially implicit but negatively weighted double It\^o integral gives unconditional stability over all parameter values, and converges with the expected order in the mean-square sense. This opens up the possibility of local mesh refinement in the spatial domain, and we show experimentally that this can be beneficial in the presence of reduced regularity at boundaries

    Stability and Convergence analysis of a Crank-Nicolson Galerkin scheme for the fractional Korteweg-de Vries equation

    Full text link
    In this paper we study the convergence of a fully discrete Crank-Nicolson Galerkin scheme for the initial value problem associated with the fractional Korteweg-de Vries (KdV) equation, which involves the fractional Laplacian and non-linear convection terms. Our proof relies on the Kato type local smoothing effect to estimate the localized Hα/2H^{\alpha/2}-norm of the approximated solution, where α∈[1,2)\alpha \in [1,2). We demonstrate that the scheme converges strongly in L2(0,T;Lloc2(R))L^2(0,T;L^2_{loc}(\mathbb{R})) to a weak solution of the fractional KdV equation provided the initial data in L2(R)L^2(\mathbb{R}). Assuming the initial data is sufficiently regular, we obtain the rate of convergence for the numerical scheme. Finally, the theoretical convergence rates are justified numerically through various numerical illustrations

    A unified error analysis for the numerical solution of nonlinear wave-type equations with application to kinetic boundary conditions

    Get PDF
    In this thesis, a unified error analysis for discretizations of nonlinear first- and second-order wave-type equations is provided. For this, the wave equations as well as their space discretizations are considered as nonlinear evolution equations in Hilbert spaces. The space discretizations are supplemented with Runge-Kutta time discretizations. By employing stability properties of monotone operators, abstract error bounds for the space, time, and full discretizations are derived. Further, for semilinear second-order wave-type equations, an implicit-explicit time integration scheme is presented. This scheme only requires the solution of a linear system of equations in each time step and it is stable under a step size restriction only depending on the nonlinearity. It is proven that the scheme converges with second order in time and in combination with the abstract space discretization of the unified error analysis, corresponding full discretization error bounds are derived. The abstract results are used to derive convergence rates for an isoparametric finite element space discretization of a wave equation with kinetic boundary conditions and nonlinear forcing and damping terms. For the combination of the finite element discretization with Runge-Kutta methods or the implicit-explicit scheme, respectively, error bounds of the resulting fully discrete schemes are proven. The theoretical results are illustrated by numerical experiments
    • …
    corecore