6 research outputs found

    Guaranteed Lower Eigenvalue Bound of Steklov Operator with Conforming Finite Element Methods

    Full text link
    For the eigenvalue problem of the Steklov differential operator, by following Liu's approach, an algorithm utilizing the conforming finite element method (FEM) is proposed to provide guaranteed lower bounds for the eigenvalues. The proposed method requires the a priori error estimation for FEM solution to nonhomogeneous Neumann problems, which is solved by constructing the hypercircle for the corresponding FEM spaces and boundary conditions. Numerical examples are also shown to confirm the efficiency of our proposed method.Comment: 21 pages, 4 figures, 4 table

    Computational Inverse Problems for Partial Differential Equations

    Get PDF
    The problem of determining unknown quantities in a PDE from measurements of (part of) the solution to this PDE arises in a wide range of applications in science, technology, medicine, and finance. The unknown quantity may e.g. be a coefficient, an initial or a boundary condition, a source term, or the shape of a boundary. The identification of such quantities is often computationally challenging and requires profound knowledge of the analytical properties of the underlying PDE as well as numerical techniques. The focus of this workshop was on applications in phase retrieval, imaging with waves in random media, and seismology of the Earth and the Sun, a further emphasis was put on stochastic aspects in the context of uncertainty quantification and parameter identification in stochastic differential equations. Many open problems and mathematical challenges in application fields were addressed, and intensive discussions provided an insight into the high potential of joining deep knowledge in numerical analysis, partial differential equations, and regularization, but also in mathematical statistics, homogenization, optimization, differential geometry, numerical linear algebra, and variational analysis to tackle these challenges

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore