2,867 research outputs found

    Performance of 3D-space-based atoms-in-molecules methods for electronic delocalization aromaticity indices

    Get PDF
    Several definitions of an atom in a molecule (AIM) in three-dimensional (3D) space, including both fuzzy and disjoint domains, are used to calculate electron sharing indices (ESI) and related electronic aromaticity measures, namely, Iringand multicenter indices (MCI), for a wide set of cyclic planar aromatic and nonaromatic molecules of different ring size. The results obtained using the recent iterative Hirshfeld scheme are compared with those derived from the classical Hirshfeld method and from Bader's quantum theory of atoms in molecules. For bonded atoms, all methods yield ESI values in very good agreement, especially for C-C interactions. In the case of nonbonded interactions, there are relevant deviations, particularly between fuzzy and QTAIM schemes. These discrepancies directly translate into significant differences in the values and the trends of the aromaticity indices. In particular, the chemically expected trends are more consistently found when using disjoint domains. Careful examination of the underlying effects reveals the different reasons why the aromaticity indices investigated give the expected results for binary divisions of 3D spaceM.S. is grateful for the nancial help furnished by the Spanish MICINN Project No. CTQ2008-03077/BQU and by the Catalan DIUE through project No. 2009SGR63

    Solving the radial Dirac equations: a numerical odyssey

    Full text link
    We discuss, in a pedagogical way, how to solve for relativistic wave functions from the radial Dirac equations. After an brief introduction, in Section II we solve the equations for a linear Lorentz scalar potential, V_s(r), that provides for confinement of a quark. The case of massless u and d quarks is treated first, as these are necessarily quite relativistic. We use an iterative procedure to find the eigenenergies and the upper and lower component wave functions for the ground state and then, later, some excited states. Solutions for the massive quarks (s, c, and b) are also presented. In Section III we solve for the case of a Coulomb potential, which is a time-like component of a Lorentz vector potential, V_v(r). We re-derive, numerically, the (analytically well-known) relativistic hydrogen atom eigenenergies and wave functions, and later extend that to the cases of heavier one-electron atoms and muonic atoms. Finally, Section IV finds solutions for a combination of the V_s and V_v potentials. We treat two cases. The first is one in which V_s is the linear potential used in Sec. II and V_v is Coulombic, as in Sec. III. The other is when both V_s and V_v are linearly confining, and we establish when these potentials give a vanishing spin-orbit interaction (as has been shown to be the case in quark models of the hadronic spectrum).Comment: 39 pages (total), 23 figures, 2 table

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure

    The two electron molecular bond revisited: from Bohr orbits to two-center orbitals

    Full text link
    In this review we first discuss extension of Bohr's 1913 molecular model and show that it corresponds to the large-D limit of a dimensional scaling (D-scaling) analysis, as developed by Herschbach and coworkers. In a separate but synergetic approach to the two-electron problem, we summarize recent advances in constructing analytical models for describing the two-electron bond. The emphasis here is not maximally attainable numerical accuracy, but beyond textbook accuracy as informed by physical insights. We demonstrate how the interplay of the cusp condition, the asymptotic condition, the electron-correlation, configuration interaction, and the exact one electron two-center orbitals, can produce energy results approaching chemical accuracy. Reviews of more traditional calculational approaches, such as Hartree-Fock, are also given. The inclusion of electron correlation via Hylleraas type functions is well known to be important, but difficult to implement for more than two electrons. The use of the D-scaled Bohr model offers the tantalizing possibility of obtaining electron correlation energy in a non-traditional way.Comment: 99 pages, 29 figures, review article, to appear in Advances in Atomic, Molecular and Optical Physic
    • …
    corecore