659 research outputs found

    Two local conditions on the vertex stabiliser of arc-transitive graphs and their effect on the Sylow subgroups

    Full text link
    In this paper we study GG-arc-transitive graphs Δ\Delta where the permutation group GxΔ(x)G_x^{\Delta(x)} induced by the stabiliser GxG_x of the vertex xx on the neighbourhood Δ(x)\Delta(x) satisfies the two conditions given in the introduction. We show that for such a GG-arc-transitive graph Δ\Delta, if (x,y)(x,y) is an arc of Δ\Delta, then the subgroup Gx,y[1]G_{x,y}^{[1]} of GG fixing pointwise Δ(x)\Delta(x) and Δ(y)\Delta(y) is a pp-group for some prime pp. Next we prove that every GG-locally primitive (respectively quasiprimitive, semiprimitive) graph satisfies our two local hypotheses. Thus this provides a new Thompson-Wielandt-like theorem for a very large class of arc-transitive graphs. Furthermore, we give various families of GG-arc-transitive graphs where our two local conditions do not apply and where Gx,y[1]G_{x,y}^{[1]} has arbitrarily large composition factors

    Locally ss-distance transitive graphs

    Full text link
    We give a unified approach to analysing, for each positive integer ss, a class of finite connected graphs that contains all the distance transitive graphs as well as the locally ss-arc transitive graphs of diameter at least ss. A graph is in the class if it is connected and if, for each vertex vv, the subgroup of automorphisms fixing vv acts transitively on the set of vertices at distance ii from vv, for each ii from 1 to ss. We prove that this class is closed under forming normal quotients. Several graphs in the class are designated as degenerate, and a nondegenerate graph in the class is called basic if all its nontrivial normal quotients are degenerate. We prove that, for s≥2s\geq 2, a nondegenerate, nonbasic graph in the class is either a complete multipartite graph, or a normal cover of a basic graph. We prove further that, apart from the complete bipartite graphs, each basic graph admits a faithful quasiprimitive action on each of its (1 or 2) vertex orbits, or a biquasiprimitive action. These results invite detailed additional analysis of the basic graphs using the theory of quasiprimitive permutation groups.Comment: Revised after referee report

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Subdegree growth rates of infinite primitive permutation groups

    Get PDF
    A transitive group GG of permutations of a set Ω\Omega is primitive if the only GG-invariant equivalence relations on Ω\Omega are the trivial and universal relations. If α∈Ω\alpha \in \Omega, then the orbits of the stabiliser GαG_\alpha on Ω\Omega are called the α\alpha-suborbits of GG; when GG acts transitively the cardinalities of these α\alpha-suborbits are the subdegrees of GG. If GG acts primitively on an infinite set Ω\Omega, and all the suborbits of GG are finite, Adeleke and Neumann asked if, after enumerating the subdegrees of GG as a non-decreasing sequence 1=m0≤m1≤...1 = m_0 \leq m_1 \leq ..., the subdegree growth rates of infinite primitive groups that act distance-transitively on locally finite distance-transitive graphs are extremal, and conjecture there might exist a number cc which perhaps depends upon GG, perhaps only on mm, such that mr≤c(m−2)r−1m_r \leq c(m-2)^{r-1}. In this paper it is shown that such an enumeration is not desirable, as there exist infinite primitive permutation groups possessing no infinite subdegree, in which two distinct subdegrees are each equal to the cardinality of infinitely many suborbits. The examples used to show this provide several novel methods for constructing infinite primitive graphs. A revised enumeration method is then proposed, and it is shown that, under this, Adeleke and Neumann's question may be answered, at least for groups exhibiting suitable rates of growth.Comment: 41 page
    • …
    corecore