2,253 research outputs found

    A Family of Maximum Margin Criterion for Adaptive Learning

    Full text link
    In recent years, pattern analysis plays an important role in data mining and recognition, and many variants have been proposed to handle complicated scenarios. In the literature, it has been quite familiar with high dimensionality of data samples, but either such characteristics or large data have become usual sense in real-world applications. In this work, an improved maximum margin criterion (MMC) method is introduced firstly. With the new definition of MMC, several variants of MMC, including random MMC, layered MMC, 2D^2 MMC, are designed to make adaptive learning applicable. Particularly, the MMC network is developed to learn deep features of images in light of simple deep networks. Experimental results on a diversity of data sets demonstrate the discriminant ability of proposed MMC methods are compenent to be adopted in complicated application scenarios.Comment: 14 page

    Subspace Methods for Face Recognition: Singularity, Regularization, and Robustness

    Get PDF
    Face recognition has been an important issue in computer vision and pattern recognition over the last several decades (Zhao et al., 2003). While human can recognize faces easily, automated face recognition remains a great challenge in computer-based automated recognition research. One difficulty in face recognition is how to handle the variations in expression, pose an

    A face recognition system using convolutional feature extraction with linear collaborative discriminant regression classification

    Get PDF
    Face recognition is one of the important biometric authentication research areas for security purposes in many fields such as pattern recognition and image processing. However, the human face recognitions have the major problem in machine learning and deep learning techniques, since input images vary with poses of people, different lighting conditions, various expressions, ages as well as illumination conditions and it makes the face recognition process poor in accuracy. In the present research, the resolution of the image patches is reduced by the max pooling layer in convolutional neural network (CNN) and also used to make the model robust than other traditional feature extraction technique called local multiple pattern (LMP). The extracted features are fed into the linear collaborative discriminant regression classification (LCDRC) for final face recognition. Due to optimization using CNN in LCDRC, the distance ratio between the classes has maximized and the distance of the features inside the class reduces. The results stated that the CNN-LCDRC achieved 93.10% and 87.60% of mean recognition accuracy, where traditional LCDRC achieved 83.35% and 77.70% of mean recognition accuracy on ORL and YALE databases respectively for the training number 8 (i.e. 80% of training and 20% of testing data)

    Face Recognition Using Gabor-based Improved Supervised Locality Preserving Projections

    Get PDF
    A novel Gabor-based Improved Supervised Locality Preserving Projections for face recognition is presented in this paper. This new algorithm is based on a combination of Gabor wavelets representation of face images and Improved Supervised Locality Preserving Projections for face recognition and it is robust to changes in illumination and facial expressions and poses. In this paper, Gabor filter is first designed to extract the features from the whole face images, and then a supervised locality preserving projections, which is improved by two-directional 2DPCA to eliminate redundancy among Gabor features, is used to augment these Gabor feature vectors derived from Gabor wavelets representation. The new algorithm benefits mostly from two aspects: One aspect is that Gabor wavelets are promoted for their useful properties, such as invariance to illumination, rotation, scale and translations, in feature extraction. The other is that the Improved Supervised Locality Preserving Projections not only provides a category label for each class in a training set, but also reduces more coefficients for image representation from two directions and boost the recognition speed. Experiments based on the ORL face database demonstrate the effectiveness and efficiency of the new method. Results show that our new algorithm outperforms the other popular approaches reported in the literature and achieves a much higher accurate recognition rate

    A new approach to face recognition using Curvelet Transform

    Get PDF
    Multiresolution tools have been profusely employed in face recognition. Wavelet Transform is the best known among these multiresolution tools and is widely used for identification of human faces. Of late, following the success of wavelets a number of new multiresolution tools have been developed. Curvelet Transform is a recent addition to that list. It has better directional ability and effective curved edge representation capability. These two properties make curvelet transform a powerful weapon for extracting edge information from facial images. Our work aims at exploring the possibilities of curvelet transform for feature extraction from human faces in order to introduce a new alternative approach towards face recognition
    • ā€¦
    corecore