43 research outputs found

    Fusion of face and iris biometrics in security verification systems.

    Get PDF
    Master of Science in Computer Science. University of KwaZulu-Natal, Durban, 2016.Abstract available in PDF file

    Simple and secured access to networked home appliances via internet using SSL, BioHashing and single Authentication Server

    Get PDF
    This thesis describes a web-based application that will enable users to access their networked home appliances over the Internet in an easy, secured, accessible and cost effective manner, using the user's iris image only for authentication. As Internet is increasingly gaining significance and popularity in our daily lives, various home networking technologies also started gaining importance from consumers, which helped in facilitating interoperability, sharing of services and exchange of information between different electronic devices at home. As a result, the demand to be able to access home appliances or security cameras over the Internet gradually grew. In this research, we propose an efficient, secured, low-cost and user-friendly method to access networked home appliances over the Internet, providing strong, well integrated, three levels of security to the whole application and user data. According to our design, the user's iris data after hashing (using BioHashing) is sent through a secure communication channel utilizing Secure Sockets Layer v-3.0. The deterministic feature sequence from the iris image is extracted using 1D log-Gabor filters and while performing BioHashing, the orthonormalization of the pseudorandom number is implemented employing Gram-Schmidt orthonormalization algorithm. In addition to this protected data transfer mechanism, we propose the design of an Authentication Server that can be shared among multiple homes, allowing numerous users to access their home appliances in a trouble-free and secured manner. It can also bring down the cost of commercial realization of this endeavor and increase its accessibility without compromising on system security. We demonstrate that the recognition efficiency of this system is computationally effective with equal error rate (EER) of 0% and 6.75% (average) in two separate conditions on CASIA 1 and CASIA 2 iris image datasets

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Privacy and Security Assessment of Biometric Template Protection

    Full text link

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Privacy protecting biometric authentication systems

    Get PDF
    As biometrics gains popularity and proliferates into the daily life, there is an increased concern over the loss of privacy and potential misuse of biometric data held in central repositories. The major concerns are about i) the use of biometrics to track people, ii) non-revocability of biometrics (eg. if a fingerprint is compromised it can not be canceled or reissued), and iii) disclosure of sensitive information such as race, gender and health problems which may be revealed by biometric traits. The straightforward suggestion of keeping the biometric data in a user owned token (eg. smart cards) does not completely solve the problem, since malicious users can claim that their token is broken to avoid biometric verification altogether. Put together, these concerns brought the need for privacy preserving biometric authentication methods in the recent years. In this dissertation, we survey existing privacy preserving biometric systems and implement and analyze fuzzy vault in particular; we propose a new privacy preserving approach; and we study the discriminative capability of online signatures as it relates to the success of using online signatures in the available privacy preserving biometric verification systems. Our privacy preserving authentication scheme combines multiple biometric traits to obtain a multi-biometric template that hides the constituent biometrics and allows the possibility of creating non-unique identifiers for a person, such that linking separate template databases is impossible. We provide two separate realizations of the framework: one uses two separate fingerprints of the same individual to obtain a combined biometric template, while the other one combines a fingerprint with a vocal pass-phrase. We show that both realizations of the framework are successful in verifying a person's identity given both biometric traits, while preserving privacy (i.e. biometric data is protected and the combined identifier can not be used to track people). The Fuzzy Vault emerged as a promising construct which can be used in protecting biometric templates. It combines biometrics and cryptography in order to get the benefits of both fields; while biometrics provides non-repudiation and convenience, cryptography guarantees privacy and adjustable levels of security. On the other hand, the fuzzy vault is a general construct for unordered data, and as such, it is not straightforward how it can be used with different biometric traits. In the scope of this thesis, we demonstrate realizations of the fuzzy vault using fingerprints and online signatures such that authentication can be done while biometric templates are protected. We then demonstrate how to use the fuzzy vault for secret sharing, using biometrics. Secret sharing schemes are cryptographic constructs where a secret is split into shares and distributed amongst the participants in such a way that it is constructed/revealed only when a necessary number of share holders come together (e.g. in joint bank accounts). The revealed secret can then be used for encryption or authentication. Finally, we implemented how correlation attacks can be used to unlock the vault; showing that further measures are needed to protect the fuzzy vault against such attacks. The discriminative capability of a biometric modality is based on its uniqueness/entropy and is an important factor in choosing a biometric for a large-scale deployment or a cryptographic application. We present an individuality model for online signatures in order to substantiate their applicability in biometric authentication. In order to build our model, we adopt the Fourier domain representation of the signature and propose a matching algorithm. The signature individuality is measured as the probability of a coincidental match between two arbitrary signatures, where model parameters are estimated using a large signature database. Based on this preliminary model and estimated parameters, we conclude that an average online signature provides a high level of security for authentication purposes. Finally, we provide a public online signature database along with associated testing protocols that can be used for testing signature verification system

    Signal processing and machine learning techniques for human verification based on finger textures

    Get PDF
    PhD ThesisIn recent years, Finger Textures (FTs) have attracted considerable attention as potential biometric characteristics. They can provide robust recognition performance as they have various human-speci c features, such as wrinkles and apparent lines distributed along the inner surface of all ngers. The main topic of this thesis is verifying people according to their unique FT patterns by exploiting signal processing and machine learning techniques. A Robust Finger Segmentation (RFS) method is rst proposed to isolate nger images from a hand area. It is able to detect the ngers as objects from a hand image. An e cient adaptive nger segmentation method is also suggested to address the problem of alignment variations in the hand image called the Adaptive and Robust Finger Segmentation (ARFS) method. A new Multi-scale Sobel Angles Local Binary Pattern (MSALBP) feature extraction method is proposed which combines the Sobel direction angles with the Multi-Scale Local Binary Pattern (MSLBP). Moreover, an enhanced method called the Enhanced Local Line Binary Pattern (ELLBP) is designed to e ciently analyse the FT patterns. As a result, a powerful human veri cation scheme based on nger Feature Level Fusion with a Probabilistic Neural Network (FLFPNN) is proposed. A multi-object fusion method, termed the Finger Contribution Fusion Neural Network (FCFNN), combines the contribution scores of the nger objects. The veri cation performances are examined in the case of missing FT areas. Consequently, to overcome nger regions which are poorly imaged a method is suggested to salvage missing FT elements by exploiting the information embedded within the trained Probabilistic Neural Network (PNN). Finally, a novel method to produce a Receiver Operating Characteristic (ROC) curve from a PNN is suggested. Furthermore, additional development to this method is applied to generate the ROC graph from the FCFNN. Three databases are employed for evaluation: The Hong Kong Polytechnic University Contact-free 3D/2D (PolyU3D2D), Indian Institute of Technology (IIT) Delhi and Spectral 460nm (S460) from the CASIA Multi-Spectral (CASIAMS) databases. Comparative simulation studies con rm the e ciency of the proposed methods for human veri cation. The main advantage of both segmentation approaches, the RFS and ARFS, is that they can collect all the FT features. The best results have been benchmarked for the ELLBP feature extraction with the FCFNN, where the best Equal Error Rate (EER) values for the three databases PolyU3D2D, IIT Delhi and CASIAMS (S460) have been achieved 0.11%, 1.35% and 0%, respectively. The proposed salvage approach for the missing feature elements has the capability to enhance the veri cation performance for the FLFPNN. Moreover, ROC graphs have been successively established from the PNN and FCFNN.the ministry of higher education and scientific research in Iraq (MOHESR); the Technical college of Mosul; the Iraqi Cultural Attach e; the active people in the MOHESR, who strongly supported Iraqi students

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    corecore