205 research outputs found

    Multi-Objective Archiving

    Full text link
    Most multi-objective optimisation algorithms maintain an archive explicitly or implicitly during their search. Such an archive can be solely used to store high-quality solutions presented to the decision maker, but in many cases may participate in the search process (e.g., as the population in evolutionary computation). Over the last two decades, archiving, the process of comparing new solutions with previous ones and deciding how to update the archive/population, stands as an important issue in evolutionary multi-objective optimisation (EMO). This is evidenced by constant efforts from the community on developing various effective archiving methods, ranging from conventional Pareto-based methods to more recent indicator-based and decomposition-based ones. However, the focus of these efforts is on empirical performance comparison in terms of specific quality indicators; there is lack of systematic study of archiving methods from a general theoretical perspective. In this paper, we attempt to conduct a systematic overview of multi-objective archiving, in the hope of paving the way to understand archiving algorithms from a holistic perspective of theory and practice, and more importantly providing a guidance on how to design theoretically desirable and practically useful archiving algorithms. In doing so, we also present that archiving algorithms based on weakly Pareto compliant indicators (e.g., epsilon-indicator), as long as designed properly, can achieve the same theoretical desirables as archivers based on Pareto compliant indicators (e.g., hypervolume indicator). Such desirables include the property limit-optimal, the limit form of the possible optimal property that a bounded archiving algorithm can have with respect to the most general form of superiority between solution sets.Comment: 21 pages, 4 figures, journa

    Maximum Volume Subset Selection for Anchored Boxes

    Get PDF
    Let B be a set of n axis-parallel boxes in d-dimensions such that each box has a corner at the origin and the other corner in the positive quadrant, and let k be a positive integer. We study the problem of selecting k boxes in B that maximize the volume of the union of the selected boxes. The research is motivated by applications in skyline queries for databases and in multicriteria optimization, where the problem is known as the hypervolume subset selection problem. It is known that the problem can be solved in polynomial time in the plane, while the best known algorithms in any dimension d>2 enumerate all size-k subsets. We show that: * The problem is NP-hard already in 3 dimensions. * In 3 dimensions, we break the enumeration of all size-k subsets, by providing an n^O(sqrt(k)) algorithm. * For any constant dimension d, we give an efficient polynomial-time approximation scheme

    Methodology for Comparison of Algorithms for Real-World Multi-objective Optimization Problems: Space Surveillance Network Design

    Get PDF
    Space Situational Awareness (SSA) is an activity vital to protecting national and commercial satellites from damage or destruction due to collisions. Recent research has demonstrated a methodology using evolutionary algorithms (EAs) which is intended to develop near-optimal Space Surveillance Network (SSN) architectures in the sense of low cost, low latency, and high resolution. That research is extended here by (1) developing and applying a methodology to compare the performance of two or more algorithms against this problem, and (2) analyzing the effects of using reduced data sets in those searches. Computational experiments are presented in which the performance of five multi-objective search algorithms are compared to one another using four binary comparison methods, each quantifying the relationship between two solution sets in different ways. Relative rankings reveal strengths and weaknesses of evaluated algorithms empowering researchers to select the best algorithm for their specific needs. The use of reduced data sets is shown to be useful for producing relative rankings of algorithms that are representative of rankings produced using the full set

    Interval-based ranking in noisy evolutionary multiobjective optimization

    Get PDF
    As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling noisy objectives in evolutionary multi-objective optimization algorithms becomes very important and is gaining more attention in recent years. In this paper we present ?-degree Pareto dominance relation for ordering the solutions in multi-objective optimization when the values of the objective functions are given as intervals. Based on this dominance relation, we propose an adaptation of the non-dominated sorting algorithm for ranking the solutions. This ranking method is then used in a standardmulti-objective evolutionary algorithm and a recently proposed novel multi-objective estimation of distribution algorithm based on joint variable-objective probabilistic modeling, and applied to a set of multi-objective problems with different levels of independent noise. The experimental results show that the use of the proposed method for solution ranking allows to approximate Pareto sets which are considerably better than those obtained when using the dominance probability-based ranking method, which is one of the main methods for noise handling in multi-objective optimization

    Multiobjective evolutionary algorithm based on vector angle neighborhood

    Get PDF
    Selection is a major driving force behind evolution and is a key feature of multiobjective evolutionary algorithms. Selection aims at promoting the survival and reproduction of individuals that are most fitted to a given environment. In the presence of multiple objectives, major challenges faced by this operator come from the need to address both the population convergence and diversity, which are conflicting to a certain extent. This paper proposes a new selection scheme for evolutionary multiobjective optimization. Its distinctive feature is a similarity measure for estimating the population diversity, which is based on the angle between the objective vectors. The smaller the angle, the more similar individuals. The concept of similarity is exploited during the mating by defining the neighborhood and the replacement by determining the most crowded region where the worst individual is identified. The latter is performed on the basis of a convergence measure that plays a major role in guiding the population towards the Pareto optimal front. The proposed algorithm is intended to exploit strengths of decomposition-based approaches in promoting diversity among the population while reducing the user's burden of specifying weight vectors before the search. The proposed approach is validated by computational experiments with state-of-the-art algorithms on problems with different characteristics. The obtained results indicate a highly competitive performance of the proposed approach. Significant advantages are revealed when dealing with problems posing substantial difficulties in keeping diversity, including many-objective problems. The relevance of the suggested similarity and convergence measures are shown. The validity of the approach is also demonstrated on engineering problems.This work was supported by the Portuguese Fundacao para a Ciencia e Tecnologia under grant PEst-C/CTM/LA0025/2013 (Projecto Estrategico - LA 25 - 2013-2014 - Strategic Project - LA 25 - 2013-2014).info:eu-repo/semantics/publishedVersio
    • …
    corecore