46 research outputs found

    Analysis and design of LDPC codes for time-selective complex-fading channels

    Full text link

    Channel Estimation for Wireless OFDM Communications

    Get PDF

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Iterative Receiver for MIMO-OFDM System with ICI Cancellation and Channel Estimation

    Get PDF
    As a multi-carrier modulation scheme, Orthogonal Frequency Division Multiplexing (OFDM) technique can achieve high data rate in frequency-selective fading channels by splitting a broadband signal into a number of narrowband signals over a number of subcarriers, where each subcarrier is more robust to multipath. The wireless communication system with multiple antennas at both the transmitter and receiver, known as multiple-input multiple-output (MIMO) system, achieves high capacity by transmitting independent information over different antennas simultaneously. The combination of OFDM with multiple antennas has been considered as one of most promising techniques for future wireless communication systems. The challenge in the detection of a space-time signal is to design a low-complexity detector, which can efficiently remove interference resulted from channel variations and approach the interference-free bound. The application of iterative parallel interference canceller (PIC) with joint detection and decoding has been a promising approach. However, the decision statistics of a linear PIC is biased toward the decision boundary after the first cancellation stage. In this thesis, we employ an iterative receiver with a decoder metric, which considerably reduces the bias effect in the second iteration, which is critical for the performance of the iterative algorithm. Channel state information is required in a MIMO-OFDM system signal detection at the receiver. Its accuracy directly affects the overall performance of MIMO-OFDM systems. In order to estimate the channel in high-delay-spread environments, pilot symbols should be inserted among subcarriers before transmission. To estimate the channel over all the subcarriers, various types of interpolators can be used. In this thesis, a linear interpolator and a trigonometric interpolator are compared. Then we propose a new interpolator called the multi-tap method, which has a much better system performance. In MIMO-OFDM systems, the time-varying fading channels can destroy the orthogonality of subcarriers. This causes serious intercarrier interference (ICI), thus leading to significant system performance degradation, which becomes more severe as the normalized Doppler frequency increases. In this thesis, we propose a low-complexity iterative receiver with joint frequency- domain ICI cancellation and pilot-assisted channel estimation to minimize the effect of time-varying fading channels. At the first stage of receiver, the interference between adjacent subcarriers is subtracted from received OFDM symbols. The parallel interference cancellation detection with decision statistics combining (DSC) is then performed to suppress the interference from other antennas. By restricting the interference to a limited number of neighboring subcarriers, the computational complexity of the proposed receiver can be significantly reduced. In order to construct the time variant channel matrix in the frequency domain, channel estimation is required. However, an accurate estimation requiring complete knowledge of channel time variations for each block, cannot be obtained. For time- varying frequency-selective fading channels, the placement of pilot tones also has a significant impact on the quality of the channel estimates. Under the assumption that channel variations can be approximated by a linear model, we can derive channel state information (CSI) in the frequency domain and estimate time-domain channel parameters. In this thesis, an iterative low-complexity channel estimation method is proposed to improve the system performance. Pilot symbols are inserted in the transmitted OFDM symbols to mitigate the effect of ICI and the channel estimates are used to update the results of both the frequency domain equalizer and the PICDSC detector in each iteration. The complexity of this algorithm can be reduced because the matrices are precalculated and stored in the receiver when the placement of pilots symbols is fixed in OFDM symbols before transmission. Finally, simulation results show that the proposed MIMO-OFDM iterative receiver can effectively mitigate the effect of ICI and approach the ICI-free performance over time-varying frequency-selective fading channels

    Multilevel Mixture Kalman Filter

    Get PDF

    Comparative study and performance evaluation of MC-CDMA and OFDM over AWGN and fading channels environment

    Get PDF
    Η απαίτηση για εφαρμογές υψηλής ταχύτητας μετάδοσης δεδομένων έχει αυξηθεί σημαντικά τα τελευταία χρόνια. Η πίεση των χρηστών σήμερα για ταχύτερες επικοινωνίες, ανεξαρτήτως κινητής ή σταθερής, χωρίς επιπλέον κόστος είναι μια πραγματικότητα. Για να πραγματοποιηθούν αυτές οι απαιτήσεις, προτάθηκε ένα νέο σχήμα που συνδυάζει ψηφιακή διαμόρφωση και πολλαπλές προσβάσεις, για την ακρίβεια η Πολλαπλή Πρόσβαση με διαίρεση Κώδικα Πολλαπλού Φέροντος (Multi-Carrier Code Division Multiple Access MC-CDMA). Η εφαρμογή του Γρήγορου Μετασχηματισμού Φουριέ (Fast Fourier Transform,FFT) που βασίζεται στο (Orthogonal Frequency Division Multiplexing, OFDM) χρησιμοποιεί τις περίπλοκες λειτουργίες βάσεως και αντικαθίσταται από κυματομορφές για να μειώσει το επίπεδο της παρεμβολής. Έχει βρεθεί ότι οι μετασχηματισμένες κυματομορφές (Wavelet Transform,W.T.) που βασίζονται στον Haar είναι ικανές να μειώσουν το ISI και το ICI, που προκαλούνται από απώλειες στην ορθογωνιότητα μεταξύ των φερόντων, κάτι που τις καθιστά απλούστερες για την εφαρμογή από του FFT. Επιπλέον κέρδος στην απόδοση μπορεί να επιτευχθεί αναζητώντας μια εναλλακτική λειτουργία ορθογωνικής βάσης και βρίσκοντας ένα καλύτερο μετασχηματισμό από του Φουριέ (Fourier) και τον μετασχηματισμό κυματομορφής (Wavelet Transform). Στην παρούσα εργασία, υπάρχουν τρία προτεινόμενα μοντέλα. Το 1ο, ( A proposed Model ‘1’ of OFDM based In-Place Wavelet Transform), το 2ο, A proposed Model ‘2’ based In-Place Wavelet Transform Algorithm and Phase Matrix (P.M) και το 3ο, A proposed Model ‘3’ of MC-CDMA Based on Multiwavelet Transform. Οι αποδόσεις τους συγκρίθηκαν με τα παραδοσιακά μοντέλα μονού χρήστη κάτω από διαφορετικά κανάλια (Κανάλι AWGN, επίπεδη διάλειψη και επιλεκτική διάλειψη).The demand for high data rate wireless multi-media applications has increased significantly in the past few years. The wireless user’s pressure towards faster communications, no matter whether mobile, nomadic, or fixed positioned, without extra cost is nowadays a reality. To fulfill these demands, a new scheme which combines wireless digital modulation and multiple accesses was proposed in the recent years, namely, Multicarrier-Code Division Multiple Access (MC-CDMA). The Fourier based OFDM uses the complex exponential bases functions and it is replaced by wavelets in order to reduce the level of interference. It is found that the Haar-based wavelets are capable of reducing the ISI and ICI, which are caused by the loss in orthogonality between the carriers. Further performance gains can be made by looking at alternative orthogonal basis functions and finding a better transform rather than Fourier and wavelet transform. In this thesis, there are three proposed models [Model ‘1’ (OFDM based on In-Place Wavelet Transform, Model ‘2’ (MC-CDMA based on IP-WT and Phase Matrix) and Model ‘3’ (MC-CDMA based on Multiwavelet Transform)] were created and then comparison their performances with the traditional models for single user system were compared under different channel characteristics (AWGN channel, flat fading and selective fading). The conclusion of my study as follows, the models (1) was achieved much lower bit error rates than traditional models based FFT. Therefore these models can be considered as an alternative to the conventional MC-CDMA based FFT. The main advantage of using In-Place wavelet transform in the proposed models that it does not require an additional array at each sweep such as in ordered Fast Haar wavelet transform, which makes it simpler for implementation than FFT. The model (2) gave a new algorithm based on In-Place wavelet transform with first level processing multiple by PM was proposed. The model (3) gave much lower bit error than other two models in additional to traditional models

    Frame synchronization for PSAM in AWGN and Rayleigh fading channels

    Get PDF
    Pilot Symbol Assisted Modulation (PSAM) is a good method to compensate for the channel fading effect in wireless mobile communications. In PSAM, known pilot symbols are periodically inserted into the transmitted data symbol stream and the receiver uses these symbols to derive amplitude and phase reference. One aspect of this procedure, which has not received much attention yet, is the frame synchronization, i.e. the method used by the receiver to locate the time position of the pilot symbols. In this study, two novel non-coherent frame synchronization methods are introduced in which only the magnitude of received signal is used to obtain the timing of the pilot symbol. The methods are evaluated for both AWGN and frequency non-selective slow Rayleigh fading channels. One synchronization technique is derived by standard maximum likelihood (ML) estimation formulation, and the other is obtained by using maximum a Posteriori probability (MAP) with a threshold test. Signal processing in the receiver uses simplifying approximations that rely on relatively high signal-to-noise ratio (SNR) as consistent with the reception of 16-QAM. Computer simulation has been used to test the acquisition time performance and the probability of false acquisition. Several lengths and patterns of pilot symbol sequences were tested where every 10th symbol was a pilot symbol and all other symbols were randomly selected data symbols. When compared with the other published synchronizers, results from this study show better performance in both AWGN and fading channels. Significantly better performance is observed in the presence of receiver frequency offsets

    Interference suppression and diversity for CDMA systems

    Get PDF
    In code-division multiple-access (CDMA) systems, due to non-orthogonality of the spreading codes and multipath channels, the desired signal suffers interference from other users. Signal fading due to multipath propagation is another source of impairment in wireless CDMA systems, often severely impacting performance. In this dissertation, reduced-rank minimum mean square error (MMSE) receiver and reduced-rank minimum variance receiver are investigated to suppress interference; transmit diversity is applied to multicarrier CDMA (MC-CDMA) systems to combat fading; packet combing is studied to provide both interference suppression and diversity for CDMA random access systems. The reduced-rank MMSE receiver that uses a reduced-rank estimated covariance matrix is studied to improve the performance of MMSE receiver in CDMA systems. It is shown that the reduced-rank MMSE receiver has much better performance than the full-rank MMSE receiver when the covariance matrix is estimated by using a finite number of data samples and the desired signal is in a low dimensional subspace. It is also demonstrated that the reduced-rank minimum variance receiver outperforms the full-rank minimum variance receiver. The probability density function of the output SNR of the full-rank and reduced-rank linear MMSE estimators is derived for a general linear signal model under the assumption that the signals and noise are Gaussian distributed. Space-time coding that is originally proposed for narrow band systems is applied to an MC-CDMA system in order to get transmit diversity for such a wideband system. Some techniques to jointly decode the space-time code and suppress interference are developed. The channel estimation using either pilot channels or pilot symbols is studied for MC-CDMA systems with space-time coding. Performance of CDMA random access systems with packet combining in fading channels is analyzed. By combining the current retransmitted packet with all its previous transmitted copies, the receiver obtains a diversity gain plus an increased interference and noise suppression gain. Therefore, the bit error rate dramatically decreases with the number of transmissions increasing, which in turn improves the system throughput and reduces the average delay

    EM-Based iterative channel estimation and sequence detection for space-time coded modulation

    Get PDF
    Reliable detection of signals transmitted over a wireless communication channel requires knowledge of the channel estimate. In this work, the application of expectationmaximization (EM) algorithm to estimation of unknown channel and detection of space-time coded modulation (STCM) signals is investigated. An STCM communication system is presented which includes symbol interleaving at the transmitter and iterative EM-based soft-output decoding at the receiver. The channel and signal model are introduced with a quasi-static and time-varying Rayleigh fading channels considered to evaluate the performance of the communication system. Performance of the system employing Kalman filter with per-survivor processing to do the channel estimation and Viterbi algorithm for sequence detection is used as a reference. The first approach to apply the EM algorithm to channel estimation presents a design of an online receiver with sliding data window. Next, a block-processing EM-based iterative receiver is presented which utilizes soft values of a posteriori probabilities (APP) with maximum a posteriori probability (MAP) as the criterion of optimality in both: detection and channel estimation stages (APP-EM receiver). In addition, a symbol interleaver is introduced at the transmitter which has a great desirable impact on system performance. First, it eliminates error propagation between the detection and channel estimation stages in the receiver EM loop. Second, the interleaver increases the diversity advantage to combat deep fades of a fast fading channel. In the first basic version of the APP-EM iterative receiver, it is assumed that noise variance at the receiver input is known. Then a modified version of the receiver is presented where such assumption is not made. In addition to sequence detection and channel estimation, the EM iteration loop includes the estimation of unknown additive white Gaussian noise variance. Finally, different properties of the APP-EM iterative receiver are investigated including the effects of training sequence length on system performance, interleaver and channel correlation length effects and the performance of the system at different Rayleigh channel fading rates
    corecore