15,495 research outputs found

    Comparison of input devices in an ISEE direct timbre manipulation task

    Get PDF
    The representation and manipulation of sound within multimedia systems is an important and currently under-researched area. The paper gives an overview of the authors' work on the direct manipulation of audio information, and describes a solution based upon the navigation of four-dimensional scaled timbre spaces. Three hardware input devices were experimentally evaluated for use in a timbre space navigation task: the Apple Standard Mouse, Gravis Advanced Mousestick II joystick (absolute and relative) and the Nintendo Power Glove. Results show that the usability of these devices significantly affected the efficacy of the system, and that conventional low-cost, low-dimensional devices provided better performance than the low-cost, multidimensional dataglove

    Semantic form as interface

    Get PDF
    The term interface had a remarkable career over the past several decades, motivated largely by its use in computer science. Although the concept of a "surface common to two areas" (Oxford Advanced Learner's Dictionary, 1980) is intuitively clear enough, the range of its application is not very sharp and well defined, a "common surface" is open to a wide range of interpretations

    Functional Dynamics I : Articulation Process

    Full text link
    The articulation process of dynamical networks is studied with a functional map, a minimal model for the dynamic change of relationships through iteration. The model is a dynamical system of a function ff, not of variables, having a self-reference term fff \circ f, introduced by recalling that operation in a biological system is often applied to itself, as is typically seen in rules in the natural language or genes. Starting from an inarticulate network, two types of fixed points are formed as an invariant structure with iterations. The function is folded with time, until it has finite or infinite piecewise-flat segments of fixed points, regarded as articulation. For an initial logistic map, attracted functions are classified into step, folded step, fractal, and random phases, according to the degree of folding. Oscillatory dynamics are also found, where function values are mapped to several fixed points periodically. The significance of our results to prototype categorization in language is discussed.Comment: 48 pages, 15 figeres (5 gif files

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    The poet sings: “resonance” in Paul Valéry’s poietics

    Get PDF
    This paper analyses Paul Valéry’s theories relating to his stated goal of poetic production: the attainment of “resonance” and a “singing-state”. My intention is to defend Valéry’s theory as a valid and consistent model of the creative process in poetry. To that end, I will draw support from T. W. Adorno’s claim that Valéry’s manner of reflective journalising in his Notebooks can furnish us with what he calls “aesthetic insight”. The consistency of Valéry’s theory will be supported by comparisons with the inferentialist understanding of semantics. Valéry proves to be a reliable exemplar of what might be called a “practice-led” aesthetics

    Hard, Harder, and the Hardest Problem: The Society of Cognitive Selves

    Get PDF
    The hard problem of consciousness is explicating how moving matter becomes thinking matter. Harder yet is the problem of spelling out the mutual determinations of individual experiences and the experiencing self. Determining how the collective social consciousness influences and is influenced by the individual selves constituting the society is the hardest problem. Drawing parallels between individual cognition and the collective knowing of mathematical science, here we present a conceptualization of the cognitive dimension of the self. Our abstraction of the relations between the physical world, biological brain, mind, intuition, consciousness, cognitive self, and the society can facilitate the construction of the conceptual repertoire required for an explicit science of the self within human society
    corecore