714 research outputs found

    iMapD: intrinsic Map Dynamics exploration for uncharted effective free energy landscapes

    Full text link
    We describe and implement iMapD, a computer-assisted approach for accelerating the exploration of uncharted effective Free Energy Surfaces (FES), and more generally for the extraction of coarse-grained, macroscopic information from atomistic or stochastic (here Molecular Dynamics, MD) simulations. The approach functionally links the MD simulator with nonlinear manifold learning techniques. The added value comes from biasing the simulator towards new, unexplored phase space regions by exploiting the smoothness of the (gradually, as the exploration progresses) revealed intrinsic low-dimensional geometry of the FES

    Mathematical Imaging and Surface Processing

    Get PDF
    Within the last decade image and geometry processing have become increasingly rigorous with solid foundations in mathematics. Both areas are research fields at the intersection of different mathematical disciplines, ranging from geometry and calculus of variations to PDE analysis and numerical analysis. The workshop brought together scientists from all these areas and a fruitful interplay took place. There was a lively exchange of ideas between geometry and image processing applications areas, characterized in a number of ways in this workshop. For example, optimal transport, first applied in computer vision is now used to define a distance measure between 3d shapes, spectral analysis as a tool in image processing can be applied in surface classification and matching, and so on. We have also seen the use of Riemannian geometry as a powerful tool to improve the analysis of multivalued images. This volume collects the abstracts for all the presentations covering this wide spectrum of tools and application domains

    Shapes of hydrophobic thick membranes

    Full text link
    We introduce and study the behavior of a tethered membrane of non-zero thickness embedded in three dimensions subject to an effective self-attraction induced by hydrophobicity arising from the tendency to minimize the area exposed to a solvent. The phase behavior and the nature of the folded conformations are found to be quite distinct in the small and large solvent size regimes. We demonstrate spontaneous symmetry-breaking with the membrane folding along a preferential axis, when the solvent molecules are small compared to the membrane thickness. For large solvent molecule size, a local crinkling mechanism effectively shields the membrane from the solvent, even in relatively flat conformations. We discuss the binding/unbinding transition of a membrane to a wall that serves to shield the membrane from the solvent.Comment: 7 pages, 5 figures, to appear in EP

    Intrinsic map dynamics exploration for uncharted effective free-energy landscapes

    Get PDF
    We describe and implement a computer-assisted approach for accelerating the exploration of uncharted effective free-energy surfaces (FESs). More generally, the aim is the extraction of coarse-grained, macroscopic information from stochastic or atomistic simulations, such as molecular dynamics (MD). The approach functionally links the MD simulator with nonlinear manifold learning techniques. The added value comes from biasing the simulator toward unexplored phase-space regions by exploiting the smoothness of the gradually revealed intrinsic low-dimensional geometry of the FES

    Local Orthogonal Rectification: A New Tool for Geometric Phase Space Analysis

    Get PDF
    Local orthogonal rectification (LOR) provides a natural and useful geometric frame for analyzing dynamics relative to manifolds embedded in flows. LOR can be applied to any embedded base manifold in a system of ODEs of arbitrary dimension to establish a corresponding system of LOR equations for analyzing dynamics within the LOR frame. The LOR equations encode geometric properties of the underlying flow and remain valid, in general, beyond a local neighborhood of the embedded manifold. Additionally, we illustrate the utility of LOR by showing a wide range of application domains. In the plane, we use the LOR approach to derive a novel definition for rivers, long-recognized but poorly understood trajectories that locally attract other orbits yet need not be related to invariant manifolds or other familiar phase space structures, and to identify rivers within several example systems. In higher dimensions, we apply LOR to identify periodic orbits and study the transient dynamics nearby. In the LOR method, %in Rn\R^n for any nn, the standard approach of finding periodic orbits by solving for fixed points of a Poincar\'{e} return map is replaced by the solution of a boundary value problem with fixed endpoints, and the computation provides information about the stability of the identified orbit. We detail the general method and derive theory to show that once a periodic orbit has been identified with LOR, the LOR coordinate system allows us to characterize the stability of the periodic orbit, to continue the orbit with respect to system parameters, to identify invariant manifolds attendant to the periodic orbit, and to compute the asymptotic phase associated with points in a neighborhood of the periodic orbit in a novel way. Finally, we generalize the definition of rivers beyond planar systems, and demonstrate a fundamental connection between canard solutions in two-timescale systems and generalized rivers. We will again use a blow-up transformation on the LOR equations, which provides a useful decomposition for studying trajectories' behavior relative to the embedded base curve

    Point-set manifold processing for computational mechanics: thin shells, reduced order modeling, cell motility and molecular conformations

    Get PDF
    In many applications, one would like to perform calculations on smooth manifolds of dimension d embedded in a high-dimensional space of dimension D. Often, a continuous description of such manifold is not known, and instead it is sampled by a set of scattered points in high dimensions. This poses a serious challenge. In this thesis, we approximate the point-set manifold as an overlapping set of smooth parametric descriptions, whose geometric structure is revealed by statistical learning methods, and then parametrized by meshfree methods. This approach avoids any global parameterization, and hence is applicable to manifolds of any genus and complex geometry. It combines four ingredients: (1) partitioning of the point set into subregions of trivial topology, (2) the automatic detection of the local geometric structure of the manifold by nonlinear dimensionality reduction techniques, (3) the local parameterization of the manifold using smooth meshfree (here local maximum-entropy) approximants, and (4) patching together the local representations by means of a partition of unity. In this thesis we show the generality, flexibility, and accuracy of the method in four different problems. First, we exercise it in the context of Kirchhoff-Love thin shells, (d=2, D=3). We test our methodology against classical linear and non linear benchmarks in thin-shell analysis, and highlight its ability to handle point-set surfaces of complex topology and geometry. We then tackle problems of much higher dimensionality. We perform reduced order modeling in the context of finite deformation elastodynamics, considering a nonlinear reduced configuration space, in contrast with classical linear approaches based on Principal Component Analysis (d=2, D=10000's). We further quantitatively unveil the geometric structure of the motility strategy of a family of micro-organisms called Euglenids from experimental videos (d=1, D~30000's). Finally, in the context of enhanced sampling in molecular dynamics, we automatically construct collective variables for the molecular conformational dynamics (d=1...6, D~30,1000's)
    • …
    corecore