6,753 research outputs found

    Improved Implementation of Point Location in General Two-Dimensional Subdivisions

    Full text link
    We present a major revamp of the point-location data structure for general two-dimensional subdivisions via randomized incremental construction, implemented in CGAL, the Computational Geometry Algorithms Library. We can now guarantee that the constructed directed acyclic graph G is of linear size and provides logarithmic query time. Via the construction of the Voronoi diagram for a given point set S of size n, this also enables nearest-neighbor queries in guaranteed O(log n) time. Another major innovation is the support of general unbounded subdivisions as well as subdivisions of two-dimensional parametric surfaces such as spheres, tori, cylinders. The implementation is exact, complete, and general, i.e., it can also handle non-linear subdivisions. Like the previous version, the data structure supports modifications of the subdivision, such as insertions and deletions of edges, after the initial preprocessing. A major challenge is to retain the expected O(n log n) preprocessing time while providing the above (deterministic) space and query-time guarantees. We describe an efficient preprocessing algorithm, which explicitly verifies the length L of the longest query path in O(n log n) time. However, instead of using L, our implementation is based on the depth D of G. Although we prove that the worst case ratio of D and L is Theta(n/log n), we conjecture, based on our experimental results, that this solution achieves expected O(n log n) preprocessing time.Comment: 21 page

    Optimal randomized incremental construction for guaranteed logarithmic planar point location

    Full text link
    Given a planar map of nn segments in which we wish to efficiently locate points, we present the first randomized incremental construction of the well-known trapezoidal-map search-structure that only requires expected O(nlogn)O(n \log n) preprocessing time while deterministically guaranteeing worst-case linear storage space and worst-case logarithmic query time. This settles a long standing open problem; the best previously known construction time of such a structure, which is based on a directed acyclic graph, so-called the history DAG, and with the above worst-case space and query-time guarantees, was expected O(nlog2n)O(n \log^2 n). The result is based on a deeper understanding of the structure of the history DAG, its depth in relation to the length of its longest search path, as well as its correspondence to the trapezoidal search tree. Our results immediately extend to planar maps induced by finite collections of pairwise interior disjoint well-behaved curves.Comment: The article significantly extends the theoretical aspects of the work presented in http://arxiv.org/abs/1205.543

    The riddle of togelby

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.At the 2017 Artificial and Computational Intelligence in Games meeting at Dagstuhl, Julian Togelius asked how to make spaces where every way of filling in the details yielded a good game. This study examines the possibility of enriching search spaces so that they contain very high rates of interesting objects, specifically game elements. While we do not answer the full challenge of finding good games throughout the space, this study highlights a number of potential avenues. These include naturally rich spaces, a simple technique for modifying a representation to search only rich parts of a larger search space, and representations that are highly expressive and so exhibit highly restricted and consequently enriched search spaces. We treat the creation of plausible road systems, useful graphics, highly expressive room placement for maps, generation of cavern-like maps, and combinatorial puzzle spaces.Final Accepted Versio

    A Fast Algorithm for Well-Spaced Points and Approximate Delaunay Graphs

    Get PDF
    We present a new algorithm that produces a well-spaced superset of points conforming to a given input set in any dimension with guaranteed optimal output size. We also provide an approximate Delaunay graph on the output points. Our algorithm runs in expected time O(2O(d)(nlogn+m))O(2^{O(d)}(n\log n + m)), where nn is the input size, mm is the output point set size, and dd is the ambient dimension. The constants only depend on the desired element quality bounds. To gain this new efficiency, the algorithm approximately maintains the Voronoi diagram of the current set of points by storing a superset of the Delaunay neighbors of each point. By retaining quality of the Voronoi diagram and avoiding the storage of the full Voronoi diagram, a simple exponential dependence on dd is obtained in the running time. Thus, if one only wants the approximate neighbors structure of a refined Delaunay mesh conforming to a set of input points, the algorithm will return a size 2O(d)m2^{O(d)}m graph in 2O(d)(nlogn+m)2^{O(d)}(n\log n + m) expected time. If mm is superlinear in nn, then we can produce a hierarchically well-spaced superset of size 2O(d)n2^{O(d)}n in 2O(d)nlogn2^{O(d)}n\log n expected time.Comment: Full versio

    Statistical theory of correlations in random packings of hard particles

    Full text link
    A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the nn-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom-up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random close packing (RCP), ϕrcp=0.85±0.01\phi_{\rm rcp} = 0.85\pm0.01, and random loose packing (RLP), ϕrlp=0.67±0.01\phi_{\rm rlp} = 0.67\pm0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement with experimental and numerical data.Comment: 9 pages, 6 figures, to appear in PR
    corecore