4 research outputs found

    MICROACELERÓMETRO MEMS, DISEÑO, ANÁLISIS ESTRUCTURAL Y ELECTROSTÁTICO (MEMS MICROACCELEROMETER, DESIGN, STRUCTURAL AND ELECTROSTATIC)

    Get PDF
    En ese trabajo se describe el diseñó de un microacelerómetro de bajo consumo de potencia con tecnología MEMS; se obtuvo un microacelerómetro de 159 μm x 109 μm. Se realizó un mesh por el método de elementos finitos, para su análisis estructural y electrostático, esto con el software COMSOL MULTIPHYSICS 5.1, para comprobar su eficiencia y buen funcionamiento. Debido a que es un sensor de movimiento inercial tipo capacitivo, su principal aplicación es en los disparadores de bolsas de aire de automóviles; el cual podría impactar en la industria automotriz y de consumo.This paper describes the design of a low power consumption micro-accelerometer with MEMS technology; the dimensions of microaccelerometer computed were 159 μm x 109 μm, a mesh was obtained by the finite element method, for its structural and electrostatic analysis, this with the COMSOL MULTIPHYSICS 5.1 software, to verify its efficiency and good performance. The main application of microaccelerometers is in automobile airbag triggers, which could impact the automotive and consumer industries

    Design of electronic systems for automotive sensor conditioning

    Get PDF
    This thesis deals with the development of sensor systems for automotive, mainly targeting the exploitation of the new generation of Micro Electro-Mechanical Sensors (MEMS), which achieve a dramatic reduction of area and power consumption but at the same time require more complexity in the sensor conditioning interface. Several issues concerning the development of automotive ASICs are presented, together with an overview of automotive electronics market and its main sensor applications. The state of the art for sensor interfaces design (the generic sensor interface concept), consists in sharing the same electronics among similar sensor applications, thus saving cost and time-to-market but also implementing a sub-optimal system with area and power overheads. A Platform Based Design methodology is proposed to overcome the limitations of generic sensor interfaces, by keeping the platform generality at the highest design layers and pursuing the maximum optimization and performances in the platform customization for a specific sensor. A complete design flow is presented (up to the ASIC implementation for gyro sensor conditioning), together with examples regarding IP development for reuse and low power optimization of third party designs. A further evolution of Platform Based Design has been achieved by means of implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform. ISIF is a highly programmable mixed-signal chip which allows a substantial reduction of design space exploration time, as it can implement in a short time a wide class of sensor conditioning architectures. Thus it lets the designers evaluate directly on silicon the impact of different architectural choices, as well as perform feasibility studies, sensor evaluations and accurate estimation of the resulting dedicated ASIC performances. Several case studies regarding fast prototyping possibilities with ISIF are presented: a magneto-resistive position sensor, a biosensor (which produces pA currents in presence of surface chemical reactions) and two capacitive inertial sensors, a gyro and a low-g YZ accelerometer. The accelerometer interface has also been implemented in miniboards of about 3 cm2 (with ISIF and sensor dies bonded together) and a series of automatic trimming and characterization procedures have been developed in order to evaluate sensor and interface behaviour over the automotive temperature range, providing a valuable feedback for the implementation of a dedicated accelerometer interface

    Two-dimensional position detection system with MEMS accelerometers, readout circuitry, and microprocessor for padless mouse applications

    No full text
    ABSTRACT A hybrid two-dimensional position sensing system is designed for mouse applications. The system measures the acceleration of handmovements which are converted into two-dimensional location coordinates. The system consists of four major components: 1 ) MEMS accelerometers, 2) CMOS analog read-out circuitry, 3) an acceleration magnitude extraction module, and 4) a 16-bit RISC microprocessor: Mechanical and analog circuit simulation shows that the designed padless mouse system can detect accelerations as small as 5.3 mg and operate up to 18MHz
    corecore