8,166 research outputs found

    A framework for detection and classification of events in neural activity

    Full text link
    We present a method for the real time prediction of punctate events in neural activity, based on the time-frequency spectrum of the signal, applicable both to continuous processes like local field potentials (LFP) as well as to spike trains. We test it on recordings of LFP and spiking activity acquired previously from the lateral intraparietal area (LIP) of macaque monkeys performing a memory-saccade task. In contrast to earlier work, where trials with known start times were classified, our method detects and classifies trials directly from the data. It provides a means to quantitatively compare and contrast the content of LFP signals and spike trains: we find that the detector performance based on the LFP matches the performance based on spike rates. The method should find application in the development of neural prosthetics based on the LFP signal. Our approach uses a new feature vector, which we call the 2D cepstrum.Comment: 30 pages, 6 figures; This version submitted to the IEEE Transactions in Biomedical Engineerin

    Channel detection on two-dimensional magnetic recording

    Get PDF
    Two-dimensional magnetic recording (TDMR) coupled with shingled-magnetic recording (SMR) is one of next generation techniques for increasing the hard disk drive (HDD) capacity up to 10 Tbit/in2 in order to meet the growing demand of mass storage.We focus on solving the tough problems and challenges on the detection end of TDMR. Since the reader works on the overlapped tracks, which are even narrower than the read head, the channel detector works in an environment of low signal-to-noise ratio (SNR), two-dimensional (2-D) inter-symbol interference (ISI) and colored noise, therefore it requires sophisticated detection techniques to provide reliable data recovery. Given that the complexity of optimal 2-D symbol detection is exponential on the data width, we had to choose suboptimal solutions.To build our research environment, we use an innovative Voronoi grain based channel model which captures the important features of SMR, such as squeezed tracks, tilted bit cells, 2-D ISI, electronic and media noise, etc. Then we take an in-depth exploration of channel detection techniques on the TDMR channel model. Our approaches extend the conventional 1-D detection techniques, by using a joint-track equalizer to optimize the 2-D partial-response (PR) target followed by the multi-track detector (MTD) for joint detection, or using the inter-track interference (ITI) canceller to estimate and cancel the ITI from side tracks, followed by a standard BCJR detector. We used the single-track detector (STD) for pre-detecting the side tracks to lower the overall complexity. Then we use pattern-dependent noise prediction (PDNP) techniques to linearly predict the noise sample, so as to improve the detection performance under colored media noise, and especially the data dependent jitter noise. The results show that our 2-D detectors provide significant performance gains against the conventional detectors with manageable complexity

    On Coding and Detection Techniques for Two-Dimensional Magnetic Recording

    Get PDF
    Edited version embargoed until 15.04.2020 Full version: Access restricted permanently due to 3rd party copyright restrictions. Restriction set on 15/04/2019 by AS, Doctoral CollegeThe areal density growth of magnetic recording systems is fast approaching the superparamagnetic limit for conventional magnetic disks. This is due to the increasing demand for high data storage capacity. Two-dimensional Magnetic Recording (TDMR) is a new technology aimed at increasing the areal density of magnetic recording systems beyond the limit of current disk technology using conventional disk media. However, it relies on advanced coding and signal processing techniques to achieve areal density gains. Current state of the art signal processing for TDMR channel employed iterative decoding with Low Density Parity Check (LDPC) codes, coupled with 2D equalisers and full 2D Maximum Likelihood (ML) detectors. The shortcoming of these algorithms is their computation complexity especially with regards to the ML detectors which is exponential with respect to the number of bits involved. Therefore, robust low-complexity coding, equalisation and detection algorithms are crucial for successful future deployment of the TDMR scheme. This present work is aimed at finding efficient and low-complexity coding, equalisation, detection and decoding techniques for improving the performance of TDMR channel and magnetic recording channel in general. A forward error correction (FEC) scheme of two concatenated single parity bit systems along track separated by an interleaver has been presented for channel with perpendicular magnetic recording (PMR) media. Joint detection decoding algorithm using constrained MAP detector for simultaneous detection and decoding of data with single parity bit system has been proposed. It is shown that using the proposed FEC scheme with the constrained MAP detector/decoder can achieve a gain of up to 3dB over un-coded MAP decoder for 1D interference channel. A further gain of 1.5 dB was achieved by concatenating two interleavers with extra parity bit when data density along track is high. The use of single bit parity code as a run length limited code as well as an error correction code is demonstrated to simplify detection complexity and improve system performance. A low-complexity 2D detection technique for TDMR system with Shingled Magnetic Recording Media (SMR) was also proposed. The technique used the concatenation of 2D MAP detector along track with regular MAP detector across tracks to reduce the complexity order of using full 2D detection from exponential to linear. It is shown that using this technique can improve track density with limited complexity. Two methods of FEC for TDMR channel using two single parity bit systems have been discussed. One using two concatenated single parity bits along track only, separated by a Dithered Relative Prime (DRP) interleaver and the other use the single parity bits in both directions without the DRP interleaver. Consequent to the FEC coding on the channel, a 2D multi-track MAP joint detector decoder has been proposed for simultaneous detection and decoding of the coded single parity bit data. A gain of up to 5dB was achieved using the FEC scheme with the 2D multi-track MAP joint detector decoder over un-coded 2D multi-track MAP detector in TDMR channel. In a situation with high density in both directions, it is shown that FEC coding using two concatenated single parity bits along track separated by DRP interleaver performed better than when the single parity bits are used in both directions without the DRP interleaver.9mobile Nigeri

    CROSSTALK-RESILIANT CODING FOR HIGH DENSITY DIGITAL RECORDING

    Get PDF
    Increasing the track density in magnetic systems is very difficult due to inter-track interference (ITI) caused by the magnetic field of adjacent tracks. This work presents a two-track partial response class 4 magnetic channel with linear and symmetrical ITI; and explores modulation codes, signal processing methods and error correction codes in order to mitigate the effects of ITI. Recording codes were investigated, and a new class of two-dimensional run-length limited recording codes is described. The new class of codes controls the type of ITI and has been found to be about 10% more resilient to ITI compared to conventional run-length limited codes. A new adaptive trellis has also been described that adaptively solves for the effect of ITI. This has been found to give gains up to 5dB in signal to noise ratio (SNR) at 40% ITI. It was also found that the new class of codes were about 10% more resilient to ITI compared to conventional recording codes when decoded with the new trellis. Error correction coding methods were applied, and the use of Low Density Parity Check (LDPC) codes was investigated. It was found that at high SNR, conventional codes could perform as well as the new modulation codes in a combined modulation and error correction coding scheme. Results suggest that high rate LDPC codes can mitigate the effect of ITI, however the decoders have convergence problems beyond 30% ITI

    Accuracy of prediction of infarct-related arrhythmic circuits from image-based models reconstructed from low and high resolution MRI.

    Get PDF
    Identification of optimal ablation sites in hearts with infarct-related ventricular tachycardia (VT) remains difficult to achieve with the current catheter-based mapping techniques. Limitations arise from the ambiguities in determining the reentrant pathways location(s). The goal of this study was to develop experimentally validated, individualized computer models of infarcted swine hearts, reconstructed from high-resolution ex-vivo MRI and to examine the accuracy of the reentrant circuit location prediction when models of the same hearts are instead reconstructed from low clinical-resolution MRI scans. To achieve this goal, we utilized retrospective data obtained from four pigs ~10 weeks post infarction that underwent VT induction via programmed stimulation and epicardial activation mapping via a multielectrode epicardial sock. After the experiment, high-resolution ex-vivo MRI with late gadolinium enhancement was acquired. The Hi-res images were downsampled into two lower resolutions (Med-res and Low-res) in order to replicate image quality obtainable in the clinic. The images were segmented and models were reconstructed from the three image stacks for each pig heart. VT induction similar to what was performed in the experiment was simulated. Results of the reconstructions showed that the geometry of the ventricles including the infarct could be accurately obtained from Med-res and Low-res images. Simulation results demonstrated that induced VTs in the Med-res and Low-res models were located close to those in Hi-res models. Importantly, all models, regardless of image resolution, accurately predicted the VT morphology and circuit location induced in the experiment. These results demonstrate that MRI-based computer models of hearts with ischemic cardiomyopathy could provide a unique opportunity to predict and analyze VT resulting for from specific infarct architecture, and thus may assist in clinical decisions to identify and ablate the reentrant circuit(s)

    Two dimensional signal processing for storage channels

    Get PDF
    Over the past decade, storage channels have undergone a steady increase in capacity. With the prediction of achieving 10 Tb/in2 areal density for magnetic recording channels in sight, the industry is pushing towards di erent technologies for storage channels. Heat-assisted magnetic recording, bit-patterned media, and twodimensional magnetic recording (TDMR) are cited as viable alternative technologies to meet the increasing market demand. Among these technologies, the twodimensional magnetic recording channel has the advantage of using conventional medium while relying on improvement from signal processing. Capacity approaching codes and detection methods tailored to the magnetic recording channels are the main signal processing tools used in magnetic recording. The promise is that two-dimensional signal processing will play a role in bringing about the theoretical predictions. The main challenges in TDMR media are as follows: i) the small area allocated to each bit on the media, and the sophisticated read and write processes in shingled magnetic recording devices result in signi cant amount of noise, ii) the twodimensional inter-symbol interference is intrinsic to the nature of shingled magnetic recording. Thus, a feasible two-dimensional communication system is needed to combat the errors that arise from aggressive read and write processes. In this dissertation, we present some of the work done on signal processing aspect for storage channels. We discuss i) the nano-scale model of the storage channel, ii) noise characteristics and corresponding detection strategies, iii) two-dimensional signal processing targeted at shingled magnetic recording

    Contributions to adaptive equalization and timing recovery for optical storage systems

    Get PDF
    no abstrac
    corecore