1,330 research outputs found

    Segmentation-Aware Convolutional Networks Using Local Attention Masks

    Get PDF
    We introduce an approach to integrate segmentation information within a convolutional neural network (CNN). This counter-acts the tendency of CNNs to smooth information across regions and increases their spatial precision. To obtain segmentation information, we set up a CNN to provide an embedding space where region co-membership can be estimated based on Euclidean distance. We use these embeddings to compute a local attention mask relative to every neuron position. We incorporate such masks in CNNs and replace the convolution operation with a "segmentation-aware" variant that allows a neuron to selectively attend to inputs coming from its own region. We call the resulting network a segmentation-aware CNN because it adapts its filters at each image point according to local segmentation cues. We demonstrate the merit of our method on two widely different dense prediction tasks, that involve classification (semantic segmentation) and regression (optical flow). Our results show that in semantic segmentation we can match the performance of DenseCRFs while being faster and simpler, and in optical flow we obtain clearly sharper responses than networks that do not use local attention masks. In both cases, segmentation-aware convolution yields systematic improvements over strong baselines. Source code for this work is available online at http://cs.cmu.edu/~aharley/segaware

    The analytic edge - image reconstruction from edge data via the Cauchy Integral

    Full text link
    A novel image reconstruction algorithm from edges (image gradients) follows from the Sokhostki-Plemelj Theorem of complex analysis, an elaboration of the standard Cauchy (Singular) Integral. This algorithm demonstrates the use of Singular Integral Equation methods to image processing, extending the more common use of Partial Differential Equations (e.g. based on variants of the Diffusion or Poisson equations). The Cauchy Integral approach has a deep connection to and sheds light on the (linear and non-linear) diffusion equation, the retinex algorithm and energy-based image regularization. It extends the commonly understood local definition of an edge to a global, complex analytic structure - the analytic edge - the contrast weighted kernel of the Cauchy Integral. Superposition of the set of analytic edges provides a "filled-in" image which is the piece-wise analytic image corresponding to the edge (gradient data) supplied. This is a fully parallel operation which avoids the time penalty associated with iterative solutions and thus is compatible with the short time (about 150 milliseconds) that is biologically available for the brain to construct a perceptual image from edge data. Although this algorithm produces an exact reconstruction of a filled-in image from the gradients of that image, slight modifications of it produce images which correspond to perceptual reports of human observers when presented with a wide range of "visual contrast illusion" images

    A generalisable framework for saliency-based line segment detection

    Get PDF
    Here we present a novel, information-theoretic salient line segment detector. Existing line detectors typically only use the image gradient to search for potential lines. Consequently, many lines are found, particularly in repetitive scenes. In contrast, our approach detects lines that define regions of significant divergence between pixel intensity or colour statistics. This results in a novel detector that naturally avoids the repetitive parts of a scene while detecting the strong, discriminative lines present. We furthermore use our approach as a saliency filter on existing line detectors to more efficiently detect salient line segments. The approach is highly generalisable, depending only on image statistics rather than image gradient; and this is demonstrated by an extension to depth imagery. Our work is evaluated against a number of other line detectors and a quantitative evaluation demonstrates a significant improvement over existing line detectors for a range of image transformation

    Interactive volumetric segmentation for textile micro-tomography data using wavelets and nonlocal means

    Get PDF
    This work addresses segmentation of volumetric images of woven carbon fiber textiles from micro-tomography data. We propose a semi-supervised algorithm to classify carbon fibers that requires sparse input as opposed to completely labeled images. The main contributions are: (a) design of effective discriminative classifiers, for three-dimensional textile samples, trained on wavelet features for segmentation; (b) coupling of previous step with nonlocal means as simple, efficient alternative to the Potts model; and (c) demonstration of reuse of classifier to diverse samples containing similar content. We evaluate our work by curating test sets of voxels in the absence of a complete ground truth mask. The algorithm obtains an average 0.95 F1 score on test sets and average F1 score of 0.93 on new samples. We conclude with discussion of failure cases and propose future directions toward analysis of spatiotemporal high-resolution micro-tomography images

    Hierarchical Image Segmentation using The Watershed Algorithim with A Streaming Implementation

    Get PDF
    We have implemented a graphical user interface (GUI) based semi-automatic hierarchical segmentation scheme, which works in three stages. In the first stage, we process the original image by filtering and threshold the gradient to reduce the level of noise. In the second stage, we compute the watershed segmentation of the image using the rainfalling simulation approach. In the third stage, we apply two region merging schemes, namely implicit region merging and seeded region merging, to the result of the watershed algorithm. Both the region merging schemes are based on the watershed depth of regions and serve to reduce the over segmentation produced by the watershed algorithm. Implicit region merging automatically produces a hierarchy of regions. In seeded region merging, a selected seed region can be grown from the watershed result, producing a hierarchy. A meaningful segmentation can be simply chosen from the hierarchy produced. We have also proposed and tested a streaming algorithm based on the watershed algorithm, which computes the segmentation of an image without iterative processing of adjacent blocks. We have proved that the streaming algorithm produces the same result as the serial watershed algorithm. We have also discussed the extensibility of the streaming algorithm to efficient parallel implementations

    Retinal Fundus Image Analysis for Diagnosis of Glaucoma: A Comprehensive Survey

    Full text link
    © 2016 IEEE. The rapid development of digital imaging and computer vision has increased the potential of using the image processing technologies in ophthalmology. Image processing systems are used in standard clinical practices with the development of medical diagnostic systems. The retinal images provide vital information about the health of the sensory part of the visual system. Retinal diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, Stargardt's disease, and retinopathy of prematurity, can lead to blindness manifest as artifacts in the retinal image. An automated system can be used for offering standardized large-scale screening at a lower cost, which may reduce human errors, provide services to remote areas, as well as free from observer bias and fatigue. Treatment for retinal diseases is available; the challenge lies in finding a cost-effective approach with high sensitivity and specificity that can be applied to large populations in a timely manner to identify those who are at risk at the early stages of the disease. The progress of the glaucoma disease is very often quiet in the early stages. The number of people affected has been increasing and patients are seldom aware of the disease, which can cause delay in the treatment. A review of how computer-aided approaches may be applied in the diagnosis and staging of glaucoma is discussed here. The current status of the computer technology is reviewed, covering localization and segmentation of the optic nerve head, pixel level glaucomatic changes, diagonosis using 3-D data sets, and artificial neural networks for detecting the progression of the glaucoma disease
    • …
    corecore