44,981 research outputs found

    Unequal Error Protected JPEG 2000 Broadcast Scheme with Progressive Fountain Codes

    Full text link
    This paper proposes a novel scheme, based on progressive fountain codes, for broadcasting JPEG 2000 multimedia. In such a broadcast scheme, progressive resolution levels of images/video have been unequally protected when transmitted using the proposed progressive fountain codes. With progressive fountain codes applied in the broadcast scheme, the resolutions of images (JPEG 2000) or videos (MJPEG 2000) received by different users can be automatically adaptive to their channel qualities, i.e. the users with good channel qualities are possible to receive the high resolution images/vedio while the users with bad channel qualities may receive low resolution images/vedio. Finally, the performance of the proposed scheme is evaluated with the MJPEG 2000 broadcast prototype

    Optical Time-Frequency Packing: Principles, Design, Implementation, and Experimental Demonstration

    Full text link
    Time-frequency packing (TFP) transmission provides the highest achievable spectral efficiency with a constrained symbol alphabet and detector complexity. In this work, the application of the TFP technique to fiber-optic systems is investigated and experimentally demonstrated. The main theoretical aspects, design guidelines, and implementation issues are discussed, focusing on those aspects which are peculiar to TFP systems. In particular, adaptive compensation of propagation impairments, matched filtering, and maximum a posteriori probability detection are obtained by a combination of a butterfly equalizer and four 8-state parallel Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. A novel algorithm that ensures adaptive equalization, channel estimation, and a proper distribution of tasks between the equalizer and BCJR detectors is proposed. A set of irregular low-density parity-check codes with different rates is designed to operate at low error rates and approach the spectral efficiency limit achievable by TFP at different signal-to-noise ratios. An experimental demonstration of the designed system is finally provided with five dual-polarization QPSK-modulated optical carriers, densely packed in a 100 GHz bandwidth, employing a recirculating loop to test the performance of the system at different transmission distances.Comment: This paper has been accepted for publication in the IEEE/OSA Journal of Lightwave Technolog

    Single integrated device for optical CDMA code processing in dual-code environment

    Get PDF
    We report on the design, fabrication and performance of a matching integrated optical CDMA encoder-decoder pair based on holographic Bragg reflector technology. Simultaneous encoding/decoding operation of two multiple wavelength-hopping time-spreading codes was successfully demonstrated and shown to support two error-free OCDMA links at OC-24. A double-pass scheme was employed in the devices to enable the use of longer code length

    Measuring gravitational waves from binary black hole coalescences: II. the waves' information and its extraction, with and without templates

    Get PDF
    We discuss the extraction of information from detected binary black hole (BBH) coalescence gravitational waves, focusing on the merger phase that occurs after the gradual inspiral and before the ringdown. Our results are: (1) If numerical relativity simulations have not produced template merger waveforms before BBH detections by LIGO/VIRGO, one can band-pass filter the merger waves. For BBHs smaller than about 40 solar masses detected via their inspiral waves, the band pass filtering signal to noise ratio indicates that the merger waves should typically be just barely visible in the noise for initial and advanced LIGO interferometers. (2) We derive an optimized (maximum likelihood) method for extracting a best-fit merger waveform from the noisy detector output; one "perpendicularly projects" this output onto a function space (specified using wavelets) that incorporates our prior knowledge of the waveforms. An extension of the method allows one to extract the BBH's two independent waveforms from outputs of several interferometers. (3) If numerical relativists produce codes for generating merger templates but running the codes is too expensive to allow an extensive survey of the merger parameter space, then a coarse survey of this parameter space, to determine the ranges of the several key parameters and to explore several qualitative issues which we describe, would be useful for data analysis purposes. (4) A complete set of templates could be used to test the nonlinear dynamics of general relativity and to measure some of the binary parameters. We estimate the number of bits of information obtainable from the merger waves (about 10 to 60 for LIGO/VIRGO, up to 200 for LISA), estimate the information loss due to template numerical errors or sparseness in the template grid, and infer approximate requirements on template accuracy and spacing.Comment: 33 pages, Rextex 3.1 macros, no figures, submitted to Phys Rev

    Color enhancement of landsat agricultural imagery: JPL LACIE image processing support task

    Get PDF
    Color enhancement techniques were applied to LACIE LANDSAT segments to determine if such enhancement can assist analysis in crop identification. The procedure involved increasing the color range by removing correlation between components. First, a principal component transformation was performed, followed by contrast enhancement to equalize component variances, followed by an inverse transformation to restore familiar color relationships. Filtering was applied to lower order components to reduce color speckle in the enhanced products. Use of single acquisition and multiple acquisition statistics to control the enhancement were compared, and the effects of normalization investigated. Evaluation is left to LACIE personnel
    corecore