1,258 research outputs found

    Codes as fractals and noncommutative spaces

    Get PDF
    We consider the CSS algorithm relating self-orthogonal classical linear codes to q-ary quantum stabilizer codes and we show that to such a pair of a classical and a quantum code one can associate geometric spaces constructed using methods from noncommutative geometry, arising from rational noncommutative tori and finite abelian group actions on Cuntz algebras and fractals associated to the classical codes.Comment: 18 pages LaTeX, one png figur

    States on the Cuntz algebras and p-adic random walks

    No full text

    O(N) methods in electronic structure calculations

    Full text link
    Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, which rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys (small changes
    • …
    corecore