158 research outputs found

    Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: application to the CoSSIR instrument during TC4

    Get PDF
    A Bayesian algorithm to retrieve profiles of cloud ice water content (IWC), ice particle size (<i>D</i><sub>me</sub>), and relative humidity from millimeter-wave/submillimeter-wave radiometers is presented. The first part of the algorithm prepares an a priori file with cumulative distribution functions (CDFs) and empirical orthogonal functions (EOFs) of profiles of temperature, relative humidity, three ice particle parameters (IWC, <i>D</i><sub>me</sub>, distribution width), and two liquid cloud parameters. The a priori CDFs and EOFs are derived from CloudSat radar reflectivity profiles and associated ECMWF temperature and relative humidity profiles combined with three cloud microphysical probability distributions obtained from in situ cloud probes. The second part of the algorithm uses the CDF/EOF file to perform a Bayesian retrieval with a hybrid technique that uses Monte Carlo integration (MCI) or, when too few MCI cases match the observations, uses optimization to maximize the posterior probability function. The very computationally intensive Markov chain Monte Carlo (MCMC) method also may be chosen as a solution method. The radiative transfer model assumes mixtures of several shapes of randomly oriented ice particles, and here random aggregates of spheres, dendrites, and hexagonal plates are used for tropical convection. A new physical model of stochastic dendritic snowflake aggregation is developed. The retrieval algorithm is applied to data from the Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) flown on the ER-2 aircraft during the Tropical Composition, Cloud and Climate Coupling (TC4) experiment in 2007. Example retrievals with error bars are shown for nadir profiles of IWC, <i>D</i><sub>me</sub>, and relative humidity, and nadir and conical scan swath retrievals of ice water path and average <i>D</i><sub>me</sub>. The ice cloud retrievals are evaluated by retrieving integrated 94 GHz backscattering from CoSSIR for comparison with the Cloud Radar System (CRS) flown on the same aircraft. The rms difference in integrated backscattering is around 3 dB over a 30 dB range. A comparison of CoSSIR retrieved and CRS measured reflectivity shows that CoSSIR has the ability to retrieve low-resolution ice cloud profiles in the upper troposphere

    Oscillations in routing and chaos

    Get PDF

    Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    Get PDF
    This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements

    Holistic improvement of image acquisition and reconstruction in fluorescence microscopy

    Get PDF
    Recent developments in microscopic imaging led to a better understanding of intra- and intercellular metabolic processes and, for example, to visualize structural properties of viral pathogens. In this thesis, the imaging process of widefield and confocal scanning microscopy techniques is treated holistically to highlight general strategies and maximise their information content. Poisson or shot noise is assumed to be the fundamental noise process for the given measurements. A stable focus position is a basic condition for e.g. long-term measurements in order to provide reliable information about potential changes inside the Field-of-view. While newer microscopy systems can be equipped with hardware autofocus, this is not yet the widespread standard. For image-based focus analysis, different metrics for ideal, noisy and aberrated, in case of spherical aberration and astigmatism, measurements are presented. A stable focus position is also relevant in the example of 2-photon confocal imaging and at the same time the situation is aggravated in the given example, the measurement of the retina in the living mouse. In addition to the natural drift of the focal position, which can be evaluated by means of previously introduced metrics, rhythmic heartbeat, respiration, unrhythmic muscle twitching and movement of the mouse kept in artificial sleep are added. A dejittering algorithm is presented for the measurement data obtained under these circumstances. Using the additional information about the sample distribution in ISM, a method for reconstructing 3D from 2D image data is presented in the form of thick slice unmixing. This method can further be used for suppression of light generated outside the focal layer of 3D data stacks and is compared to selective layer multi-view deconvolution. To reduce phototoxicity and save valuable measurement time for a 3D stack, the method of zLEAP is presented, by which omitted Z-planes are subsequently calculated and inserted

    Efficient Algorithms for Mumford-Shah and Potts Problems

    Get PDF
    In this work, we consider Mumford-Shah and Potts models and their higher order generalizations. Mumford-Shah and Potts models are among the most well-known variational approaches to edge-preserving smoothing and partitioning of images. Though their formulations are intuitive, their application is not straightforward as it corresponds to solving challenging, particularly non-convex, minimization problems. The main focus of this thesis is the development of new algorithmic approaches to Mumford-Shah and Potts models, which is to this day an active field of research. We start by considering the situation for univariate data. We find that switching to higher order models can overcome known shortcomings of the classical first order models when applied to data with steep slopes. Though the existing approaches to the first order models could be applied in principle, they are slow or become numerically unstable for higher orders. Therefore, we develop a new algorithm for univariate Mumford-Shah and Potts models of any order and show that it solves the models in a stable way in O(n^2). Furthermore, we develop algorithms for the inverse Potts model. The inverse Potts model can be seen as an approach to jointly reconstructing and partitioning images that are only available indirectly on the basis of measured data. Further, we give a convergence analysis for the proposed algorithms. In particular, we prove the convergence to a local minimum of the underlying NP-hard minimization problem. We apply the proposed algorithms to numerical data to illustrate their benefits. Next, we apply the multi-channel Potts prior to the reconstruction problem in multi-spectral computed tomography (CT). To this end, we propose a new superiorization approach, which perturbs the iterates of the conjugate gradient method towards better results with respect to the Potts prior. In numerical experiments, we illustrate the benefits of the proposed approach by comparing it to the existing Potts model approach from the literature as well as to the existing total variation type methods. Hereafter, we consider the second order Mumford-Shah model for edge-preserving smoothing of images which –similarly to the univariate case– improves upon the classical Mumford-Shah model for images with linear color gradients. Based on reformulations in terms of Taylor jets, i.e. specific fields of polynomials, we derive discrete second order Mumford-Shah models for which we develop an efficient algorithm using an ADMM scheme. We illustrate the potential of the proposed method by comparing it with existing methods for the second order Mumford-Shah model. Further, we illustrate its benefits in connection with edge detection. Finally, we consider the affine-linear Potts model for the image partitioning problem. As many images possess linear trends within homogeneous regions, the classical Potts model frequently leads to oversegmentation. The affine-linear Potts model accounts for that problem by allowing for linear trends within segments. We lift the corresponding minimization problem to the jet space and develop again an ADMM approach. In numerical experiments, we show that the proposed algorithm achieves lower energy values as well as faster runtimes than the method of comparison, which is based on the iterative application of the graph cut algorithm (with α-expansion moves)

    The Atmospheric Effects of Stratospheric Aircraft: a First Program Report

    Get PDF
    Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models
    • …
    corecore