36,229 research outputs found

    Multimedia data transmission for mobile wireless applications

    Get PDF
    The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Title from title screen of research.pdf file viewed on (November 14, 2006)Includes bibliographical references.Vita.Thesis (Ph. D.) University of Missouri-Columbia 2005.Dissertations, Academic -- University of Missouri--Columbia -- Electrical engineering.In this dissertation, we first address robust multimedia data transmission for mobile application. The first topic is proxy-based handheld device access to live NASA satellite weather images. The second topic is a real time easy-to-use 3D volume visualization system on mobile handheld devices. We also address energy efficient transmission for mobile application. We proposed two image transmission schemes. The first scheme is a collaborative image transmission scheme. The second scheme is multiple bit stream image encoding and small fragment burst transmission system. Finally, we address the research of applying distributed source coding in image and video coding. We show that applying distributed source coding in multiple description image coding improves the error resilience, and our syndrome-based video encoding scheme provides low complexity video encoder that is very desirable for mobile wireless application

    Robust and scalable matching pursuits video transmission using the Bluetooth air interface standard

    Get PDF

    Multi-user video streaming using unequal error protection network coding in wireless networks

    Get PDF
    In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks

    Bandwidth efficient multi-station wireless streaming based on complete complementary sequences

    Get PDF
    Data streaming from multiple base stations to a client is recognized as a robust technique for multimedia streaming. However the resulting transmission in parallel over wireless channels poses serious challenges, especially multiple access interference, multipath fading, noise effects and synchronization. Spread spectrum techniques seem the obvious choice to mitigate these effects, but at the cost of increased bandwidth requirements. This paper proposes a solution that exploits complete complementary spectrum spreading and data compression techniques jointly to resolve the communication challenges whilst ensuring efficient use of spectrum and acceptable bit error rate. Our proposed spreading scheme reduces the required transmission bandwidth by exploiting correlation among information present at multiple base stations. Results obtained show 1.75 Mchip/sec (or 25%) reduction in transmission rate, with only up to 6 dB loss in frequency-selective channel compared to a straightforward solution based solely on complete complementary spectrum spreading
    corecore