30,363 research outputs found

    The effect of the color filter array layout choice on state-of-the-art demosaicing

    Get PDF
    Interpolation from a Color Filter Array (CFA) is the most common method for obtaining full color image data. Its success relies on the smart combination of a CFA and a demosaicing algorithm. Demosaicing on the one hand has been extensively studied. Algorithmic development in the past 20 years ranges from simple linear interpolation to modern neural-network-based (NN) approaches that encode the prior knowledge of millions of training images to fill in missing data in an inconspicious way. CFA design, on the other hand, is less well studied, although still recognized to strongly impact demosaicing performance. This is because demosaicing algorithms are typically limited to one particular CFA pattern, impeding straightforward CFA comparison. This is starting to change with newer classes of demosaicing that may be considered generic or CFA-agnostic. In this study, by comparing performance of two state-of-the-art generic algorithms, we evaluate the potential of modern CFA-demosaicing. We test the hypothesis that, with the increasing power of NN-based demosaicing, the influence of optimal CFA design on system performance decreases. This hypothesis is supported with the experimental results. Such a finding would herald the possibility of relaxing CFA requirements, providing more freedom in the CFA design choice and producing high-quality cameras

    Optimal interpolation of satellite and ground data for irradiance nowcasting at city scales

    Get PDF
    We use a Bayesian method, optimal interpolation, to improve satellite derived irradiance estimates at city-scales using ground sensor data. Optimal interpolation requires error covariances in the satellite estimates and ground data, which define how information from the sensor locations is distributed across a large area. We describe three methods to choose such covariances, including a covariance parameterization that depends on the relative cloudiness between locations. Results are computed with ground data from 22 sensors over a 75Ă—80 km area centered on Tucson, AZ, using two satellite derived irradiance models. The improvements in standard error metrics for both satellite models indicate that our approach is applicable to additional satellite derived irradiance models. We also show that optimal interpolation can nearly eliminate mean bias error and improve the root mean squared error by 50%
    • …
    corecore