222 research outputs found

    Two-by-two Substitution Systems and the Undecidability of the Domino Problem

    No full text
    10+6 pagesThanks to a careful study of elementary properties of two-by-two substitution systems, we give a complete self-contained elementary construction of an aperiodic tile set and sketch how to use this tile set to elementary prove the undecidability of the classical Domino Problem

    Fixed Point and Aperiodic Tilings

    Get PDF
    An aperiodic tile set was first constructed by R.Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals) We present a new construction of an aperiodic tile set that is based on Kleene's fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gacs in the context of error-correcting computations. The flexibility of this construction allows us to construct a "robust" aperiodic tile set that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. This property was not known for any of the existing aperiodic tile sets.Comment: v5: technical revision (positions of figures are shifted

    A decidable quantified fragment of set theory with ordered pairs and some undecidable extensions

    Full text link
    In this paper we address the decision problem for a fragment of set theory with restricted quantification which extends the language studied in [4] with pair related quantifiers and constructs, in view of possible applications in the field of knowledge representation. We will also show that the decision problem for our language has a non-deterministic exponential time complexity. However, for the restricted case of formulae whose quantifier prefixes have length bounded by a constant, the decision problem becomes NP-complete. We also observe that in spite of such restriction, several useful set-theoretic constructs, mostly related to maps, are expressible. Finally, we present some undecidable extensions of our language, involving any of the operators domain, range, image, and map composition. [4] Michael Breban, Alfredo Ferro, Eugenio G. Omodeo and Jacob T. Schwartz (1981): Decision procedures for elementary sublanguages of set theory. II. Formulas involving restricted quantifiers, together with ordinal, integer, map, and domain notions. Communications on Pure and Applied Mathematics 34, pp. 177-195Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Combinatorial substitutions and sofic tilings

    Full text link
    A combinatorial substitution is a map over tilings which allows to define sets of tilings with a strong hierarchical structure. In this paper, we show that such sets of tilings are sofic, that is, can be enforced by finitely many local constraints. This extends some similar previous results (Mozes'90, Goodman-Strauss'98) in a much shorter presentation.Comment: 17 pages, 16 figures. In proceedings of JAC 201

    1D Effectively Closed Subshifts and 2D Tilings

    Full text link
    Michael Hochman showed that every 1D effectively closed subshift can be simulated by a 3D subshift of finite type and asked whether the same can be done in 2D. It turned out that the answer is positive and necessary tools were already developed in tilings theory. We discuss two alternative approaches: first, developed by N. Aubrun and M. Sablik, goes back to Leonid Levin; the second one, developed by the authors, goes back to Peter Gacs.Comment: Journ\'ees Automates Cellulaires, Turku : Finland (2010

    Aperiodic tilings and entropy

    Full text link
    In this paper we present a construction of Kari-Culik aperiodic tile set - the smallest known until now. With the help of this construction, we prove that this tileset has positive entropy. We also explain why this result was not expected

    Combinatorics of Pisot Substitutions

    Get PDF
    Siirretty Doriast
    • …
    corecore