4,257 research outputs found

    Stochastic single machine scheduling problem as a multi-stage dynamic random decision process

    Get PDF
    In this work, we study a stochastic single machine scheduling problem in which the features of learning effect on processing times, sequence-dependent setup times, and machine configuration selection are considered simultaneously. More precisely, the machine works under a set of configurations and requires stochastic sequence-dependent setup times to switch from one configuration to another. Also, the stochastic processing time of a job is a function of its position and the machine configuration. The objective is to find the sequence of jobs and choose a configuration to process each job to minimize the makespan. We first show that the proposed problem can be formulated through two-stage and multi-stage Stochastic Programming models, which are challenging from the computational point of view. Then, by looking at the problem as a multi-stage dynamic random decision process, a new deterministic approximation-based formulation is developed. The method first derives a mixed-integer non-linear model based on the concept of accessibility to all possible and available alternatives at each stage of the decision-making process. Then, to efficiently solve the problem, a new accessibility measure is defined to convert the model into the search of a shortest path throughout the stages. Extensive computational experiments are carried out on various sets of instances. We discuss and compare the results found by the resolution of plain stochastic models with those obtained by the deterministic approximation approach. Our approximation shows excellent performances both in terms of solution accuracy and computational time

    A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach

    Get PDF
    AbstractThis research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS, knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process. Computational results show that the proposed algorithm is efficient and effective

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    A Two-Agent Single-Machine Scheduling Problem with Learning and Deteriorating Considerations

    Get PDF
    Recently, interest in scheduling with deteriorating jobs and learning effects has kept growing. However, research in this area has seldom considered the multiagent setting. Motivated by these observations, we consider two-agent scheduling on a single machine involving the learning effects and deteriorating jobs simultaneously. In the proposed model, we assume that the actual processing time of a job of the first (second) agent is a decreasing (increasing) function of the total processing time of the jobs already processed in a schedule. The objective is to minimize the total weighted completion time of the jobs of the first agent with the restriction that no tardy job is allowed for the second agent. We develop a branch-and-bound and a simulated annealing algorithms for the problem. We perform extensive computational experiments to test the performance of the algorithms

    A two-agent single-machine scheduling problem with learning and . . .

    Get PDF
    Recently, interest in scheduling with deteriorating jobs and learning effects has kept growing. However, research in this area has seldom considered the multiagent setting. Motivated by these observations, we consider two-agent scheduling on a single machine involving the learning effects and deteriorating jobs simultaneously. In the proposed model, we assume that the actual processing time of a job of the first (second) agent is a decreasing (increasing) function of the total processing time of the jobs already processed in a schedule. The objective is to minimize the total weighted completion time of the jobs of the first agent with the restriction that no tardy job is allowed for the second agent. We develop a branch-and-bound and a simulated annealing algorithms for the problem. We perform extensive computational experiments to test the performance of the algorithms

    Competitive Two-Agent Scheduling with Learning Effect and Release Times on a Single Machine

    Get PDF
    The learning effect has gained much attention in the scheduling research recently, where many researchers have focused their problems on only one optimization. This study further addresses the scheduling problem in which two agents compete to perform their own jobs with release times on a common single machine with learning effect. The aim is to minimize the total weighted completion time of the first agent, subject to an upper bound on the maximum lateness of the second agent. We propose a branch-and-bound approach with several useful dominance properties and an effective lower bound for searching the optimal solution and three simulated-annealing algorithms for the near-optimal solutions. The computational results show that the proposed algorithms perform effectively and efficiently
    • …
    corecore