569 research outputs found

    Vehicular Wireless Communication Standards: Challenges and Comparison

    Get PDF
    Autonomous vehicles (AVs) are the future of mobility. Safe and reliable AVs are required for widespread adoption by a community which is only possible if these AVs can communicate with each other & with other entities in a highly efficient way. AVs require ultra-reliable communications for safety-critical applications to ensure safe driving. Existing vehicular communication standards, i.e., IEEE 802.11p (DSRC), ITS-G5, & LTE, etc., do not meet the requirements of high throughput, ultra-high reliability, and ultra-low latency along with other issues. To address these challenges, IEEE 802.11bd & 5G NR-V2X standards provide more efficient and reliable communication, however, these standards are in the developing stage. Existing literature generally discusses the features of these standards only and does not discuss the drawbacks. Similarly, existing literature does not discuss the comparison between these standards or discusses a comparison between any two standards only. However, this work comprehensively describes different issues/challenges faced by these standards. This work also comprehensively provides a comparison among these standards along with their salient features. The work also describes spectrum management issues comprehensively, i.e., interoperability issues, co-existence with Wi-Fi, etc. The work also describes different other issues comprehensively along with recommendations. The work describes that 802.11bd and 5G NR are the two potential future standards for efficient vehicle communications; however, these standards must be able to provide backward compatibility, interoperability, and co-existence with current and previous standards

    On the Scalability of the 5G RAN to Support Advanced V2X Services

    Get PDF
    Cellular networks currently support non-safety-critical Vehicle to Everything (V2X) services with relaxed latency and reliability requirements. 5G introduces novel technologies at the radio, transport and core networks that are expected to significantly reduce the latency and increase the flexibility and reliability of cellular networks. This has raised expectations on the possibility for 5G to support advanced V2X applications, including connected and automated applications such as advanced ADAS services, cooperative driving and remote driving. At the radio access network (RAN), 5G introduces the New Radio (NR) interface that incorporates flexible numerologies and new slot formats, channel coding schemes, and radio resource management processes. Previous studies have reported latency values of 5G NR below 2 ms when considering scenarios with limited users in the cell and with unlimited bandwidth. Supporting advanced V2X services using 5G requires a scalable network capable to support a larger number of users without degrading the required service level in scenarios with potentially limited spectrum. This study advances the current state of the art with the evaluation of the scalability of the 5G NR RAN. As a case study, the paper evaluates the capacity of 5G RAN to support the latency and reliability requirements of the cooperative lane change use case as the network load varies. The results show that the capacity of the 5G RAN to support advanced V2X services depends on the system configuration, network load and service requirements. These results call for a careful design, configuration and planning of 5G networks to support V2X services.UMH work was supported in part by the Spanish Ministry of Science and Innovation (MCI), AEI and FEDER funds under Project TEC2017-88612-R, and the Ministry of Universities (IJC2018-036862-I)

    Ultra reliable 5G mmWAve communications for V2X scénarios

    Get PDF
    The Automotive Vehicle to Everything (V2X)technology is one of the most important innovations that theworld will see in the years to come. This paradigm will supportmany advanced services such as object detection and recognition,risk identification and avoidance, car platooning. These serviceswill require several keys among them, the high data transmissionrates of the order of gigabits per driving hour, and highreliability, and high speed for transition of data, which may beavailable through the capabilities of the new architecture for thenext generation of wireless communications 5G and the widebandwidth of the millimeter wave (mm Wave) which is deemed tobe a real solution for the V2X requirements. However, thechallenges related to the reliability/latency and security of theV2X system and nature of mm wave communication requireseveral solutions either for natural challenges such as High pathloss propagation, penetrating disability or for the technicalchallenges. This paper provides an overview of the V2Xcommunication technology investigates the V2X challengesincluding the mm wave and and finally presents some efficientsolutions
    • …
    corecore