781 research outputs found

    Distributed Detection over Fading MACs with Multiple Antennas at the Fusion Center

    Full text link
    A distributed detection problem over fading Gaussian multiple-access channels is considered. Sensors observe a phenomenon and transmit their observations to a fusion center using the amplify and forward scheme. The fusion center has multiple antennas with different channel models considered between the sensors and the fusion center, and different cases of channel state information are assumed at the sensors. The performance is evaluated in terms of the error exponent for each of these cases, where the effect of multiple antennas at the fusion center is studied. It is shown that for zero-mean channels between the sensors and the fusion center when there is no channel information at the sensors, arbitrarily large gains in the error exponent can be obtained with sufficient increase in the number of antennas at the fusion center. In stark contrast, when there is channel information at the sensors, the gain in error exponent due to having multiple antennas at the fusion center is shown to be no more than a factor of (8/pi) for Rayleigh fading channels between the sensors and the fusion center, independent of the number of antennas at the fusion center, or correlation among noise samples across sensors. Scaling laws for such gains are also provided when both sensors and antennas are increased simultaneously. Simple practical schemes and a numerical method using semidefinite relaxation techniques are presented that utilize the limited possible gains available. Simulations are used to establish the accuracy of the results.Comment: 21 pages, 9 figures, submitted to the IEEE Transactions on Signal Processin

    On optimum parameter modulation-estimation from a large deviations perspective

    Full text link
    We consider the problem of jointly optimum modulation and estimation of a real-valued random parameter, conveyed over an additive white Gaussian noise (AWGN) channel, where the performance metric is the large deviations behavior of the estimator, namely, the exponential decay rate (as a function of the observation time) of the probability that the estimation error would exceed a certain threshold. Our basic result is in providing an exact characterization of the fastest achievable exponential decay rate, among all possible modulator-estimator (transmitter-receiver) pairs, where the modulator is limited only in the signal power, but not in bandwidth. This exponential rate turns out to be given by the reliability function of the AWGN channel. We also discuss several ways to achieve this optimum performance, and one of them is based on quantization of the parameter, followed by optimum channel coding and modulation, which gives rise to a separation-based transmitter, if one views this setting from the perspective of joint source-channel coding. This is in spite of the fact that, in general, when error exponents are considered, the source-channel separation theorem does not hold true. We also discuss several observations, modifications and extensions of this result in several directions, including other channels, and the case of multidimensional parameter vectors. One of our findings concerning the latter, is that there is an abrupt threshold effect in the dimensionality of the parameter vector: below a certain critical dimension, the probability of excess estimation error may still decay exponentially, but beyond this value, it must converge to unity.Comment: 26 pages; Submitted to the IEEE Transactions on Information Theor

    Finite Dimensional Infinite Constellations

    Full text link
    In the setting of a Gaussian channel without power constraints, proposed by Poltyrev, the codewords are points in an n-dimensional Euclidean space (an infinite constellation) and the tradeoff between their density and the error probability is considered. The capacity in this setting is the highest achievable normalized log density (NLD) with vanishing error probability. This capacity as well as error exponent bounds for this setting are known. In this work we consider the optimal performance achievable in the fixed blocklength (dimension) regime. We provide two new achievability bounds, and extend the validity of the sphere bound to finite dimensional infinite constellations. We also provide asymptotic analysis of the bounds: When the NLD is fixed, we provide asymptotic expansions for the bounds that are significantly tighter than the previously known error exponent results. When the error probability is fixed, we show that as n grows, the gap to capacity is inversely proportional (up to the first order) to the square-root of n where the proportion constant is given by the inverse Q-function of the allowed error probability, times the square root of 1/2. In an analogy to similar result in channel coding, the dispersion of infinite constellations is 1/2nat^2 per channel use. All our achievability results use lattices and therefore hold for the maximal error probability as well. Connections to the error exponent of the power constrained Gaussian channel and to the volume-to-noise ratio as a figure of merit are discussed. In addition, we demonstrate the tightness of the results numerically and compare to state-of-the-art coding schemes.Comment: 54 pages, 13 figures. Submitted to IEEE Transactions on Information Theor

    The price of certainty: "waterslide curves" and the gap to capacity

    Full text link
    The classical problem of reliable point-to-point digital communication is to achieve a low probability of error while keeping the rate high and the total power consumption small. Traditional information-theoretic analysis uses `waterfall' curves to convey the revolutionary idea that unboundedly low probabilities of bit-error are attainable using only finite transmit power. However, practitioners have long observed that the decoder complexity, and hence the total power consumption, goes up when attempting to use sophisticated codes that operate close to the waterfall curve. This paper gives an explicit model for power consumption at an idealized decoder that allows for extreme parallelism in implementation. The decoder architecture is in the spirit of message passing and iterative decoding for sparse-graph codes. Generalized sphere-packing arguments are used to derive lower bounds on the decoding power needed for any possible code given only the gap from the Shannon limit and the desired probability of error. As the gap goes to zero, the energy per bit spent in decoding is shown to go to infinity. This suggests that to optimize total power, the transmitter should operate at a power that is strictly above the minimum demanded by the Shannon capacity. The lower bound is plotted to show an unavoidable tradeoff between the average bit-error probability and the total power used in transmission and decoding. In the spirit of conventional waterfall curves, we call these `waterslide' curves.Comment: 37 pages, 13 figures. Submitted to IEEE Transactions on Information Theory. This version corrects a subtle bug in the proofs of the original submission and improves the bounds significantl

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme
    • …
    corecore