3,582 research outputs found

    On Generalized Records and Spatial Conjunction in Role Logic

    Full text link
    We have previously introduced role logic as a notation for describing properties of relational structures in shape analysis, databases and knowledge bases. A natural fragment of role logic corresponds to two-variable logic with counting and is therefore decidable. We show how to use role logic to describe open and closed records, as well the dual of records, inverse records. We observe that the spatial conjunction operation of separation logic naturally models record concatenation. Moreover, we show how to eliminate the spatial conjunction of formulas of quantifier depth one in first-order logic with counting. As a result, allowing spatial conjunction of formulas of quantifier depth one preserves the decidability of two-variable logic with counting. This result applies to two-variable role logic fragment as well. The resulting logic smoothly integrates type system and predicate calculus notation and can be viewed as a natural generalization of the notation for constraints arising in role analysis and similar shape analysis approaches.Comment: 30 pages. A version appears in SAS 200

    On Role Logic

    Full text link
    We present role logic, a notation for describing properties of relational structures in shape analysis, databases, and knowledge bases. We construct role logic using the ideas of de Bruijn's notation for lambda calculus, an encoding of first-order logic in lambda calculus, and a simple rule for implicit arguments of unary and binary predicates. The unrestricted version of role logic has the expressive power of first-order logic with transitive closure. Using a syntactic restriction on role logic formulas, we identify a natural fragment RL^2 of role logic. We show that the RL^2 fragment has the same expressive power as two-variable logic with counting C^2 and is therefore decidable. We present a translation of an imperative language into the decidable fragment RL^2, which allows compositional verification of programs that manipulate relational structures. In addition, we show how RL^2 encodes boolean shape analysis constraints and an expressive description logic.Comment: 20 pages. Our later SAS 2004 result builds on this wor

    Monadic second order finite satisfiability and unbounded tree-width

    Get PDF
    The finite satisfiability problem of monadic second order logic is decidable only on classes of structures of bounded tree-width by the classic result of Seese (1991). We prove the following problem is decidable: Input: (i) A monadic second order logic sentence α\alpha, and (ii) a sentence β\beta in the two-variable fragment of first order logic extended with counting quantifiers. The vocabularies of α\alpha and β\beta may intersect. Output: Is there a finite structure which satisfies α∧β\alpha\land\beta such that the restriction of the structure to the vocabulary of α\alpha has bounded tree-width? (The tree-width of the desired structure is not bounded.) As a consequence, we prove the decidability of the satisfiability problem by a finite structure of bounded tree-width of a logic extending monadic second order logic with linear cardinality constraints of the form ∣X1∣+⋯+∣Xr∣<∣Y1∣+⋯+∣Ys∣|X_{1}|+\cdots+|X_{r}|<|Y_{1}|+\cdots+|Y_{s}|, where the XiX_{i} and YjY_{j} are monadic second order variables. We prove the decidability of a similar extension of WS1S

    One-dimensional fragment of first-order logic

    Full text link
    We introduce a novel decidable fragment of first-order logic. The fragment is one-dimensional in the sense that quantification is limited to applications of blocks of existential (universal) quantifiers such that at most one variable remains free in the quantified formula. The fragment is closed under Boolean operations, but additional restrictions (called uniformity conditions) apply to combinations of atomic formulae with two or more variables. We argue that the notions of one-dimensionality and uniformity together offer a novel perspective on the robust decidability of modal logics. We also establish that minor modifications to the restrictions of the syntax of the one-dimensional fragment lead to undecidable formalisms. Namely, the two-dimensional and non-uniform one-dimensional fragments are shown undecidable. Finally, we prove that with regard to expressivity, the one-dimensional fragment is incomparable with both the guarded negation fragment and two-variable logic with counting. Our proof of the decidability of the one-dimensional fragment is based on a technique involving a direct reduction to the monadic class of first-order logic. The novel technique is itself of an independent mathematical interest

    On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

    Get PDF
    During the last decades, a lot of effort was put into identifying decidable fragments of first-order logic. Such efforts gave birth, among the others, to the two-variable fragment and the guarded fragment, depending on the type of restriction imposed on formulae from the language. Despite the success of the mentioned logics in areas like formal verification and knowledge representation, such first-order fragments are too weak to express even the simplest statistical constraints, required for modelling of influence networks or in statistical reasoning. In this work we investigate the extensions of these classical decidable logics with percentage quantifiers, specifying how frequently a formula is satisfied in the indented model. We show, surprisingly, that all the mentioned decidable fragments become undecidable under such extension, sharpening the existing results in the literature. Our negative results are supplemented by decidability of the two-variable guarded fragment with even more expressive counting, namely Presburger constraints. Our results can be applied to infer decidability of various modal and description logics, e.g. Presburger Modal Logics with Converse or ALCI, with expressive cardinality constraints

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    Two-variable Logic with Counting and a Linear Order

    Get PDF
    We study the finite satisfiability problem for the two-variable fragment of first-order logic extended with counting quantifiers (C2) and interpreted over linearly ordered structures. We show that the problem is undecidable in the case of two linear orders (in the presence of two other binary symbols). In the case of one linear order it is NEXPTIME-complete, even in the presence of the successor relation. Surprisingly, the complexity of the problem explodes when we add one binary symbol more: C2 with one linear order and in the presence of other binary predicate symbols is equivalent, under elementary reductions, to the emptiness problem for multicounter automata
    • …
    corecore