115 research outputs found

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    Resource Allocation for Downlink NOMA Systems: Key Techniques and Open Issues

    Full text link
    This article presents advances in resource allocation (RA) for downlink non-orthogonal multiple access (NOMA) systems, focusing on user pairing (UP) and power allocation (PA) algorithms. The former pairs the users to obtain the high capacity gain by exploiting the channel gain difference between the users, while the later allocates power to users in each cluster to balance system throughput and user fairness. Additionally, the article introduces the concept of cluster fairness and proposes the divideand- next largest difference-based UP algorithm to distribute the capacity gain among the NOMA clusters in a controlled manner. Furthermore, performance comparison between multiple-input multiple-output NOMA (MIMO-NOMA) and MIMO-OMA is conducted when users have pre-defined quality of service. Simulation results are presented, which validate the advantages of NOMA over OMA. Finally, the article provides avenues for further research on RA for downlink NOMA.Comment: 5G, NOMA, Resource allocation, User pairing, Power allocatio

    Multi-Beam NOMA for Hybrid mmWave Systems

    Full text link
    In this paper, we propose a multi-beam non-orthogonal multiple access (NOMA) scheme for hybrid millimeter wave (mmWave) systems and study its resource allocation. A beam splitting technique is designed to generate multiple analog beams to serve multiple users for NOMA transmission. Compared to conventional mmWave orthogonal multiple access (mmWave-OMA) schemes, the proposed scheme can serve more than one user on each radio frequency (RF) chain. Besides, in contrast to the recently proposed single-beam mmWave-NOMA scheme which can only serve multiple NOMA users within the same beam, the proposed scheme can perform NOMA transmission for the users with an arbitrary angle-of-departure (AOD) distribution. This provides a higher flexibility for applying NOMA in mmWave communications and thus can efficiently exploit the potential multi-user diversity. Then, we design a suboptimal two-stage resource allocation for maximizing the system sum-rate. In the first stage, assuming that only analog beamforming is available, a user grouping and antenna allocation algorithm is proposed to maximize the conditional system sum-rate based on the coalition formation game theory. In the second stage, with the zero-forcing (ZF) digital precoder, a suboptimal solution is devised to solve a non-convex power allocation optimization problem for the maximization of the system sum-rate which takes into account the quality of service (QoS) constraint. Simulation results show that our designed resource allocation can achieve a close-to-optimal performance in each stage. In addition, we demonstrate that the proposed multi-beam mmWave-NOMA scheme offers a higher spectral efficiency than that of the single-beam mmWave-NOMA and the mmWave-OMA schemes.Comment: Submitted for possible journal publicatio

    Data-Driven Random Access Optimization in Multi-Cell IoT Networks with NOMA

    Full text link
    Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond. In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks, where IoT devices contend for accessing the shared wireless channel using an adaptive p-persistent slotted Aloha protocol. To enable a capacity-optimal network, a novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity. It is shown that the network optimization objective is high dimensional and mathematically intractable, yet it admits favourable mathematical properties that enable the design of efficient data-driven algorithmic solutions which do not require a priori knowledge of the channel model or network topology. A centralized model-based algorithm and a scalable distributed model-free algorithm, are proposed to optimally tune the transmission probabilities of IoT devices and attain the maximum capacity. The convergence of the proposed algorithms to the optimal solution is further established based on convex optimization and game-theoretic analysis. Extensive simulations demonstrate the merits of the novel formulation and the efficacy of the proposed algorithms.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Secure Communications in NOMA System: Subcarrier Assignment and Power Allocation

    Full text link
    Secure communication is a promising technology for wireless networks because it ensures secure transmission of information. In this paper, we investigate the joint subcarrier (SC) assignment and power allocation problem for non-orthogonal multiple access (NOMA) amplify-and-forward two-way relay wireless networks, in the presence of eavesdroppers. By exploiting cooperative jamming (CJ) to enhance the security of the communication link, we aim to maximize the achievable secrecy energy efficiency by jointly designing the SC assignment, user pair scheduling and power allocation. Assuming the perfect knowledge of the channel state information (CSI) at the relay station, we propose a low-complexity subcarrier assignment scheme (SCAS-1), which is equivalent to many-to-many matching games, and then SCAS-2 is formulated as a secrecy energy efficiency maximization problem. The secure power allocation problem is modeled as a convex geometric programming problem, and then solved by interior point methods. Simulation results demonstrate that the effectiveness of the proposed SSPA algorithms under scenarios of using and not using CJ, respectively

    OPTIMISATION IN NOMA WIRELESS COMMUNICATION NETWORKS

    Get PDF

    Enhanced Energy-Efficient Downlink Resource Allocation in Green Non-Orthogonal Multiple Access Systems

    Full text link
    Despite numerous advantages, non-orthogonal multiple access (NOMA) technique can bring additional interference for the neighboring ultra-dense networks if the power consumption of the system is not properly optimized. While targeting on the green communication concept, in this paper, we propose an energy-efficient downlink resource allocation scheme for a NOMA-equipped cellular network. The objective of this work is to allocate subchannels and power of the base station among the users so that the overall energy efficiency is maximized. Since this problem is NP-hard, we attempt to find an elegant solution with reasonable complexity that provides good performance for some realistic applications. To this end, we decompose the problem into a subchannel allocation subproblem followed by a power loading subproblem that allocates power to each user's data stream on each of its allocated subchannels. We first employ a many-to-many matching model under the assumption of uniform power loading in order to obtain the solution of the first subproblem with reasonable performance. Once the the subchannel-user mapping information is known from the first solution, we propose a geometric programming (GP)-based power loading scheme upon approximating the energy efficiency of the system by a ratio of two posynomials. The techniques adopted for these subproblems better exploit the available multi-user diversity compared to the techniques used in an earlier work. Having observed the computational overhead of the GP-based power loading scheme, we also propose a suboptimal computationally-efficient algorithm for the power loading subproblem with a polynomial time complexity that provides reasonably good performance. Extensive simulation has been conducted to verify that our proposed solution schemes always outperform the existing work while consuming much less power at the base station.Comment: 29 pages (Accepted

    Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mm-wave) communications are considered as a promising technology for the fifth generation mobile networks. Mm-wave has the potential to provide multiple gigabit data rate due to the broad spectrum. Unfortunately, additional free space path loss is also caused by the high carrier frequency. On the other hand, mm-wave signals are sensitive to obstacles and more vulnerable to blocking effects. To address this issue, highly directional narrow beams are utilized in mm-wave networks. Additionally, device-to-device (D2D) users make full use of their proximity and share uplink spectrum resources in HCNs to increase the spectrum efficiency and network capacity. Towards the caused complex interferences, the combination of D2D-enabled HCNs with small cells densely deployed and mm-wave communications poses a big challenge to the resource allocation problems. In this paper, we formulate the optimization problem of D2D communication spectrum resource allocation among multiple micro-wave bands and multiple mm-wave bands in HCNs. Then, considering the totally different propagation conditions on the two bands, a heuristic algorithm is proposed to maximize the system transmission rate and approximate the solutions with sufficient accuracies. Compared with other practical schemes, we carry out extensive simulations with different system parameters, and demonstrate the superior performance of the proposed scheme. In addition, the optimality and complexity are simulated to further verify effectiveness and efficiency.Comment: 13 pages, 11 figures, IEEE Transactions on Vehicular Technolog

    Intelligent Link Adaptation for Grant-Free Access Cellular Networks: A Distributed Deep Reinforcement Learning Approach

    Full text link
    With the continuous growth of machine-type devices (MTDs), it is expected that massive machine-type communication (mMTC) will be the dominant form of traffic in future wireless networks. Applications based on this technology, have fundamentally different traffic characteristics from human-to-human (H2H) communication, which involves a relatively small number of devices transmitting large packets consistently. Conversely, in mMTC applications, a very large number of MTDs transmit small packets sporadically. Therefore, conventional grant-based access schemes commonly adopted for H2H service, are not suitable for mMTC, as they incur in a large overhead associated with the channel request procedure. We propose three grant-free distributed optimization architectures that are able to significantly minimize the average power consumption of the network. The problem of physical layer (PHY) and medium access control (MAC) optimization in grant-free random access transmission is is modeled as a partially observable stochastic game (POSG) aimed at minimizing the average transmit power under a per-device delay constraint. The results show that the proposed architectures are able to achieve significantly less average latency than a baseline, while spending less power. Moreover, the proposed architectures are more robust than the baseline, as they present less variance in the performance for different system realizations.Comment: 14 pages, 8 Figure

    Sum-Rate Maximization for UAV-assisted Visible Light Communications using NOMA: Swarm Intelligence meets Machine Learning

    Full text link
    As the integration of unmanned aerial vehicles (UAVs) into visible light communications (VLC) can offer many benefits for massive-connectivity applications and services in 5G and beyond, this work considers a UAV-assisted VLC using non-orthogonal multiple-access. More specifically, we formulate a joint problem of power allocation and UAV's placement to maximize the sum rate of all users, subject to constraints on power allocation, quality of service of users, and UAV's position. Since the problem is non-convex and NP-hard in general, it is difficult to be solved optimally. Moreover, the problem is not easy to be solved by conventional approaches, e.g., coordinate descent algorithms, due to channel modeling in VLC. Therefore, we propose using harris hawks optimization (HHO) algorithm to solve the formulated problem and obtain an efficient solution. We then use the HHO algorithm together with artificial neural networks to propose a design which can be used in real-time applications and avoid falling into the "local minima" trap in conventional trainers. Numerical results are provided to verify the effectiveness of the proposed algorithm and further demonstrate that the proposed algorithm/HHO trainer is superior to several alternative schemes and existing metaheuristic algorithms.Comment: Published in IEEE Internet of Things Journal (IoTJ) 202
    corecore