560 research outputs found

    A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks

    Full text link
    Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ïŹfth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ïŹelds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiïŹed Proportional ConïŹ‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiïŹers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiïŹcation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiïŹcation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiïŹcation, and hybrid techniques mixing deep learning with belief functions as well

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Anwendungen maschinellen Lernens fĂŒr datengetriebene PrĂ€vention auf Populationsebene

    Get PDF
    Healthcare costs are systematically rising, and current therapy-focused healthcare systems are not sustainable in the long run. While disease prevention is a viable instrument for reducing costs and suffering, it requires risk modeling to stratify populations, identify high- risk individuals and enable personalized interventions. In current clinical practice, however, systematic risk stratification is limited: on the one hand, for the vast majority of endpoints, no risk models exist. On the other hand, available models focus on predicting a single disease at a time, rendering predictor collection burdensome. At the same time, the den- sity of individual patient data is constantly increasing. Especially complex data modalities, such as -omics measurements or images, may contain systemic information on future health trajectories relevant for multiple endpoints simultaneously. However, to date, this data is inaccessible for risk modeling as no dedicated methods exist to extract clinically relevant information. This study built on recent advances in machine learning to investigate the ap- plicability of four distinct data modalities not yet leveraged for risk modeling in primary prevention. For each data modality, a neural network-based survival model was developed to extract predictive information, scrutinize performance gains over commonly collected covariates, and pinpoint potential clinical utility. Notably, the developed methodology was able to integrate polygenic risk scores for cardiovascular prevention, outperforming existing approaches and identifying benefiting subpopulations. Investigating NMR metabolomics, the developed methodology allowed the prediction of future disease onset for many common diseases at once, indicating potential applicability as a drop-in replacement for commonly collected covariates. Extending the methodology to phenome-wide risk modeling, elec- tronic health records were found to be a general source of predictive information with high systemic relevance for thousands of endpoints. Assessing retinal fundus photographs, the developed methodology identified diseases where retinal information most impacted health trajectories. In summary, the results demonstrate the capability of neural survival models to integrate complex data modalities for multi-disease risk modeling in primary prevention and illustrate the tremendous potential of machine learning models to disrupt medical practice toward data-driven prevention at population scale.Die Kosten im Gesundheitswesen steigen systematisch und derzeitige therapieorientierte Gesundheitssysteme sind nicht nachhaltig. Angesichts vieler verhinderbarer Krankheiten stellt die PrĂ€vention ein veritables Instrument zur Verringerung von Kosten und Leiden dar. Risikostratifizierung ist die grundlegende Voraussetzung fĂŒr ein prĂ€ventionszentri- ertes Gesundheitswesen um Personen mit hohem Risiko zu identifizieren und Maßnah- men einzuleiten. Heute ist eine systematische Risikostratifizierung jedoch nur begrenzt möglich, da fĂŒr die meisten Krankheiten keine Risikomodelle existieren und sich verfĂŒg- bare Modelle auf einzelne Krankheiten beschrĂ€nken. Weil fĂŒr deren Berechnung jeweils spezielle Sets an PrĂ€diktoren zu erheben sind werden in Praxis oft nur wenige Modelle angewandt. Gleichzeitig versprechen komplexe DatenmodalitĂ€ten, wie Bilder oder -omics- Messungen, systemische Informationen ĂŒber zukĂŒnftige GesundheitsverlĂ€ufe, mit poten- tieller Relevanz fĂŒr viele Endpunkte gleichzeitig. Da es an dedizierten Methoden zur Ex- traktion klinisch relevanter Informationen fehlt, sind diese Daten jedoch fĂŒr die Risikomod- ellierung unzugĂ€nglich, und ihr Potenzial blieb bislang unbewertet. Diese Studie nutzt ma- chinelles Lernen, um die Anwendbarkeit von vier DatenmodalitĂ€ten in der PrimĂ€rprĂ€ven- tion zu untersuchen: polygene Risikoscores fĂŒr die kardiovaskulĂ€re PrĂ€vention, NMR Meta- bolomicsdaten, elektronische Gesundheitsakten und Netzhautfundusfotos. Pro Datenmodal- itĂ€t wurde ein neuronales Risikomodell entwickelt, um relevante Informationen zu extra- hieren, additive Information gegenĂŒber ĂŒblicherweise erfassten Kovariaten zu quantifizieren und den potenziellen klinischen Nutzen der DatenmodalitĂ€t zu ermitteln. Die entwickelte Me-thodik konnte polygene Risikoscores fĂŒr die kardiovaskulĂ€re PrĂ€vention integrieren. Im Falle der NMR-Metabolomik erschloss die entwickelte Methodik wertvolle Informa- tionen ĂŒber den zukĂŒnftigen Ausbruch von Krankheiten. Unter Einsatz einer phĂ€nomen- weiten Risikomodellierung erwiesen sich elektronische Gesundheitsakten als Quelle prĂ€dik- tiver Information mit hoher systemischer Relevanz. Bei der Analyse von Fundusfotografien der Netzhaut wurden Krankheiten identifiziert fĂŒr deren Vorhersage Netzhautinformationen genutzt werden könnten. Zusammengefasst zeigten die Ergebnisse das Potential neuronaler Risikomodelle die medizinische Praxis in Richtung einer datengesteuerten, prĂ€ventionsori- entierten Medizin zu verĂ€ndern

    Privacy-Preserving Remote Heart Rate Estimation from Facial Videos

    Full text link
    Remote Photoplethysmography (rPPG) is the process of estimating PPG from facial videos. While this approach benefits from contactless interaction, it is reliant on videos of faces, which often constitutes an important privacy concern. Recent research has revealed that deep learning techniques are vulnerable to attacks, which can result in significant data breaches making deep rPPG estimation even more sensitive. To address this issue, we propose a data perturbation method that involves extraction of certain areas of the face with less identity-related information, followed by pixel shuffling and blurring. Our experiments on two rPPG datasets (PURE and UBFC) show that our approach reduces the accuracy of facial recognition algorithms by over 60%, with minimal impact on rPPG extraction. We also test our method on three facial recognition datasets (LFW, CALFW, and AgeDB), where our approach reduced performance by nearly 50%. Our findings demonstrate the potential of our approach as an effective privacy-preserving solution for rPPG estimation.Comment: Accepted in IEEE International Conference on Systems, Man, and Cybernetics (SMC) 202

    Deep combination of radar with optical data for gesture recognition: role of attention in fusion architectures

    Get PDF
    Multimodal time series classification is an important aspect of human gesture recognition, in which limitations of individual sensors can be overcome by combining data from multiple modalities. In a deep learning pipeline, the attention mechanism further allows for a selective, contextual concentration on relevant features. However, while the standard attention mechanism is an effective tool when working with Natural Language Processing (NLP), it is not ideal when working with temporally- or spatially-sparse multi-modal data. In this paper, we present a novel attention mechanism, Multi-Modal Attention Preconditioning (MMAP). We first demonstrate that MMAP outperforms regular attention for the task of classification of modalities involving temporal and spatial sparsity and secondly investigate the impact of attention in the fusion of radar and optical data for gesture recognition via three specific modalities: dense spatiotemporal optical data, spatially sparse/temporally dense kinematic data, and sparse spatiotemporal radar data. We explore the effect of attention on early, intermediate, and late fusion architectures and compare eight different pipelines in terms of accuracy and their ability to preserve detection accuracy when modalities are missing. Results highlight fundamental differences between late and intermediate attention mechanisms in respect to the fusion of radar and optical data

    Training a Large Video Model on a Single Machine in a Day

    Full text link
    Videos are big, complex to pre-process, and slow to train on. State-of-the-art large-scale video models are trained on clusters of 32 or more GPUs for several days. As a consequence, academia largely ceded the training of large video models to industry. In this paper, we show how to still train a state-of-the-art video model on a single machine with eight consumer-grade GPUs in a day. We identify three bottlenecks, IO, CPU, and GPU computation, and optimize each. The result is a highly efficient video training pipeline. For comparable architectures, our pipeline achieves higher accuracies with 18\frac{1}{8} of the computation compared to prior work. Code is available at https://github.com/zhaoyue-zephyrus/AVION.Comment: Tech report. Code is available at https://github.com/zhaoyue-zephyrus/AVIO
    • 

    corecore