6,195 research outputs found

    Single-trial event-related potential extraction through one-unit ICA-with-reference.

    Get PDF
    Objective: In recent years, ICA has been one of the more popular methods for extracting event-related potential (ERP) at the single-trial level. It is a blind source separation technique that allows the extraction of an ERP without making strong assumptions on the temporal and spatial characteristics of an ERP. However, the problem with traditional ICA is that the extraction is not direct and is time-consuming due to the need for source selection processing. In this paper, the application of an one-unit ICA-with-Reference (ICA-R), a constrained ICA method, is proposed. Approach: In cases where the time-region of the desired ERP is known a priori, this time information is utilized to generate a reference signal, which is then used for guiding the one-unit ICA-R to extract the source signal of the desired ERP directly. Main results: Our results showed that, as compared to traditional ICA, ICA-R is a more effective method for analysing ERP because it avoids manual source selection and it requires less computation thus resulting in faster ERP extraction. Significance: In addition to that, since the method is automated, it reduces the risks of any subjective bias in the ERP analysis. It is also a potential tool for extracting the ERP in online application

    Enhancing brain-computer interfacing through advanced independent component analysis techniques

    No full text
    A Brain-computer interface (BCI) is a direct communication system between a brain and an external device in which messages or commands sent by an individual do not pass through the brain’s normal output pathways but is detected through brain signals. Some severe motor impairments, such as Amyothrophic Lateral Sclerosis, head trauma, spinal injuries and other diseases may cause the patients to lose their muscle control and become unable to communicate with the outside environment. Currently no effective cure or treatment has yet been found for these diseases. Therefore using a BCI system to rebuild the communication pathway becomes a possible alternative solution. Among different types of BCIs, an electroencephalogram (EEG) based BCI is becoming a popular system due to EEG’s fine temporal resolution, ease of use, portability and low set-up cost. However EEG’s susceptibility to noise is a major issue to develop a robust BCI. Signal processing techniques such as coherent averaging, filtering, FFT and AR modelling, etc. are used to reduce the noise and extract components of interest. However these methods process the data on the observed mixture domain which mixes components of interest and noise. Such a limitation means that extracted EEG signals possibly still contain the noise residue or coarsely that the removed noise also contains part of EEG signals embedded. Independent Component Analysis (ICA), a Blind Source Separation (BSS) technique, is able to extract relevant information within noisy signals and separate the fundamental sources into the independent components (ICs). The most common assumption of ICA method is that the source signals are unknown and statistically independent. Through this assumption, ICA is able to recover the source signals. Since the ICA concepts appeared in the fields of neural networks and signal processing in the 1980s, many ICA applications in telecommunications, biomedical data analysis, feature extraction, speech separation, time-series analysis and data mining have been reported in the literature. In this thesis several ICA techniques are proposed to optimize two major issues for BCI applications: reducing the recording time needed in order to speed up the signal processing and reducing the number of recording channels whilst improving the final classification performance or at least with it remaining the same as the current performance. These will make BCI a more practical prospect for everyday use. This thesis first defines BCI and the diverse BCI models based on different control patterns. After the general idea of ICA is introduced along with some modifications to ICA, several new ICA approaches are proposed. The practical work in this thesis starts with the preliminary analyses on the Southampton BCI pilot datasets starting with basic and then advanced signal processing techniques. The proposed ICA techniques are then presented using a multi-channel event related potential (ERP) based BCI. Next, the ICA algorithm is applied to a multi-channel spontaneous activity based BCI. The final ICA approach aims to examine the possibility of using ICA based on just one or a few channel recordings on an ERP based BCI. The novel ICA approaches for BCI systems presented in this thesis show that ICA is able to accurately and repeatedly extract the relevant information buried within noisy signals and the signal quality is enhanced so that even a simple classifier can achieve good classification accuracy. In the ERP based BCI application, after multichannel ICA the data just applied to eight averages/epochs can achieve 83.9% classification accuracy whilst the data by coherent averaging can reach only 32.3% accuracy. In the spontaneous activity based BCI, the use of the multi-channel ICA algorithm can effectively extract discriminatory information from two types of singletrial EEG data. The classification accuracy is improved by about 25%, on average, compared to the performance on the unpreprocessed data. The single channel ICA technique on the ERP based BCI produces much better results than results using the lowpass filter. Whereas the appropriate number of averages improves the signal to noise rate of P300 activities which helps to achieve a better classification. These advantages will lead to a reliable and practical BCI for use outside of the clinical laboratory

    Spatio-Temporal Approaches to Denoising and Feature Extraction in Rapid Image Triage

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Detection of movement related cortical potentials from EEG using constrained ICA for brain-computer interface applications

    Get PDF
    The movement related cortical potential (MRCP), a slow cortical potential from the scalp electroencephalogram (EEG), has been used in real-time brain-computer-interface (BCI) systems designed for neurorehabilitation. Detecting MPCPs in real time with high accuracy and low latency is essential in these applications. In this study, we propose a new MRCP detection method based on constrained independent component analysis (cICA). The method was tested for MRCP detection during executed and imagined ankle dorsiflexion of 24 healthy participants, and compared with four commonly used spatial filters for MRCP detection in an offline experiment. The effect of cICA and the compared spatial filters on the morphology of the extracted MRCP was evaluated by two indices quantifying the signal-to-noise ratio and variability of the extracted MRCP. The performance of the filters for detection was then directly compared for accuracy and latency. The latency obtained with cICA (-34 ± 29 ms motor execution (ME) and 28 ± 16 ms for motor imagery (MI) dataset) was significantly smaller than with all other spatial filters. Moreover, cICA resulted in greater true positive rates (87.11 ± 11.73 for ME and 86.66 ± 6.96 for MI dataset) and lower false positive rates (20.69 ± 13.68 for ME and 19.31 ± 12.60 for MI dataset) compared to the other methods. These results confirm the superiority of cICA in MRCP detection with respect to previously proposed EEG filtering approaches

    Automated detection and analysis of fluorescence changes evoked by molecular signalling

    Get PDF
    Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools for visualizing concentration changes of specific ions and messenger molecules during intra- as well as intercellular communication. While fluorescent dyes have to be directly loaded into target cells and function only transiently, the expression of GEFIs can be controlled in a cell and time-specific fashion, even allowing long-term analysis in living organisms. Dye and GEFI based fluorescence fluctuations, recorded using advanced imaging technologies, are the foundation for the analysis of physiological molecular signaling. Analyzing the plethora of complex fluorescence signals is a laborious and time-consuming task. An automated analysis of fluorescent signals circumvents user bias and time constraints. However, it requires to overcome several challenges, including correct estimation of fluorescence fluctuations at basal concentrations of messenger molecules, detection and extraction of events themselves, proper segmentation of neighboring events as well as tracking of propagating events. Moreover, event detection algorithms need to be sensitive enough to accurately capture localized and low amplitude events exhibiting a limited spatial extent. This thesis presents three novel algorithms, PBasE, CoRoDe and KalEve, for the automated analysis of fluorescence events, developed to overcome the aforementioned challenges. The algorithms are integrated into a graphical application called MSparkles, specifically designed for the analysis of fluorescence signals, developed in MATLAB. The capabilities of the algorithms are demonstrated by analyzing astroglial Ca2+ events, recorded in anesthetized and awake mice, visualized using genetically encoded Ca2+ indicators (GECIs) GCaMP3 as well as GCaMP5. The results were compared to those obtained by other software packages. In addition, the analysis of neuronal Na+ events recorded in acute brain slices using SBFI-AM serve to indicate the putatively broad application range of the presented algorithms. Finally, due to increasing evidence of the pivotal role of astrocytes in neurodegenerative diseases such as epilepsy, a metric to assess the synchronous occurrence of fluorescence events is introduced. In a proof-of-principle analysis, this metric is used to correlate astroglial Ca2+ events with EEG measurementsFluoreszenzfarbstoffe und genetisch kodierte Fluoreszenzindikatoren (GEFI) sind gängige Werkzeuge zur Visualisierung von Konzentrationsänderungen bestimmter Ionen und Botenmoleküle der intra- sowie interzellulären Kommunikation. Während Fluoreszenzfarbstoffe direkt in die Zielzellen eingebracht werden müssen und nur über einen begrenzten Zeitraum funktionieren, kann die Expression von GEFIs zell- und zeitspezifisch gesteuert werden, was darüber hinaus Langzeitanalysen in lebenden Organismen ermöglicht. Farbstoff- und GEFI-basierte Fluoreszenzfluktuationen, die mit Hilfe moderner bildgebender Verfahren aufgezeichnet werden, bilden die Grundlage für die Analyse physiologischer molekularer Kommunikation. Die Analyse einer großen Zahl komplexer Fluoreszenzsignale ist jedoch eine schwierige und zeitaufwändige Aufgabe. Eine automatisierte Analyse ist dagegen weniger zeitaufwändig und unabhängig von der Voreingenommenheit des Anwenders. Allerdings müssen hierzu mehrere Herausforderungen bewältigt werden. Unter anderem die korrekte Schätzung von Fluoreszenzschwankungen bei Basalkonzentrationen von Botenmolekülen, die Detektion und Extraktion von Signalen selbst, die korrekte Segmentierung benachbarter Signale sowie die Verfolgung sich ausbreitender Signale. Darüber hinaus müssen die Algorithmen zur Signalerkennung empfindlich genug sein, um lokalisierte Signale mit geringer Amplitude sowie begrenzter räumlicher Ausdehnung genau zu erfassen. In dieser Arbeit werden drei neue Algorithmen, PBasE, CoRoDe und KalEve, für die automatische Extraktion und Analyse von Fluoreszenzsignalen vorgestellt, die entwickelt wurden, um die oben genannten Herausforderungen zu bewältigen. Die Algorithmen sind in eine grafische Anwendung namens MSparkles integriert, die speziell für die Analyse von Fluoreszenzsignalen entwickelt und in MATLAB implementiert wurde. Die Fähigkeiten der Algorithmen werden anhand der Analyse astroglialer Ca2+-Signale demonstriert, die in narkotisierten sowie wachen Mäusen aufgezeichnet und mit den genetisch kodierten Ca2+-Indikatoren (GECIs) GCaMP3 und GCaMP5 visualisiert wurden. Erlangte Ergebnisse werden anschließend mit denen anderer Softwarepakete verglichen. Darüber hinaus dient die Analyse neuronaler Na+-Signale, die in akuten Hirnschnitten mit SBFI-AM aufgezeichnet wurden, dazu, den breiten Anwendungsbereich der Algorithmen aufzuzeigen. Zu guter Letzt wird aufgrund der zunehmenden Indizien auf die zentrale Rolle von Astrozyten bei neurodegenerativen Erkrankungen wie Epilepsie eine Metrik zur Bewertung des synchronen Auftretens fluoreszenter Signale eingeführt. In einer Proof-of-Principle-Analyse wird diese Metrik verwendet, um astrogliale Ca2+-Signale mit EEG-Messungen zu korrelieren

    Brain signal analysis in space-time-frequency domain : an application to brain computer interfacing

    Get PDF
    In this dissertation, advanced methods for electroencephalogram (EEG) signal analysis in the space-time-frequency (STF) domain with applications to eye-blink (EB) artifact removal and brain computer interfacing (BCI) are developed. The two methods for EB artifact removal from EEGs are presented which respectively include the estimated spatial signatures of the EB artifacts into the signal extraction and the robust beamforming frameworks. In the developed signal extraction algorithm, the EB artifacts are extracted as uncorrelated signals from EEGs. The algorithm utilizes the spatial signatures of the EB artifacts as priori knowledge in the signal extraction stage. The spatial distributions are identified using the STF model of EEGs. In the robust beamforming approach, first a novel space-time-frequency/time-segment (STF-TS) model for EEGs is introduced. The estimated spatial signatures of the EBs are then taken into account in order to restore the artifact contaminated EEG measurements. Both algorithms are evaluated by using the simulated and real EEGs and shown to produce comparable results to that of conventional approaches. Finally, an effective paradigm for BCI is introduced. In this approach prior physiological knowledge of spectrally band limited steady-state movement related potentials is exploited. The results consolidate the method.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Induced brain activity as indicator of cognitive processes: experimental-methodical analyses and algorithms for online-applications

    Get PDF
    Die Signalverarbeitung von elektroenzephalographischen (EEG) Signalen ist ein entscheidendes Werkzeug, um die kognitiven Prozessen verstehen zu können. Beispielweise wird induzierte Hirnaktivität in mehreren Untersuchungen mit kognitiver Leistung assoziiert. Deshalb ist die Gewinnung von elektrophysiologischen Parametern grundlegend für die Charakterisierung von kognitiven Prozessen sowie von kognitiven Dysfunktionen in neurologischen Erkrankungen. Besonders bei Epilepsie treten häufig Störungen wie Gedächtnis-, oder Aufmerksamkeitsprobleme auf, zusätzlich zu Anfällen. Neurofeedback (bzw. EEG-Biofeedback) ist eine Therapiemethode, die zusätzlich zu medikamentösen- und chirurgischen Therapien bei der Behandlung vieler neurologischer Krankheiten, einschließlich Epilepsie, erfolgreich praktiziert wird. Neurofeedback wird jedoch meist dafür angewendet, eine Anfallsreduzierung zu erzielen. Dagegen wird eine Verbesserung kognitiver Fähigkeiten auf der Basis elektrophysiologischer Änderungen selten vorgesehen. Darüber hinaus sind die aktuellen Neurofeedbackstrategien für diesen Zweck ungeeignet. Der Grund dafür sind unter anderem nicht adäquate Verfahren für die Gewinnung und Quantifizierung induzierter Hirnaktivität. Unter Berücksichtigung der oben genannten Punkten wurden die kognitiven Leistungen von einer Patientengruppe (Epilepsie) und einer Probandengruppe anhand der ereignisbezogenen De-/Synchronisation (ERD/ERS) Methode untersucht. Signifikante Unterschiede wurden im Theta bzw. Alpha Band festgestellt. Diese Ergebnisse unterstützen die Verwertung von auf ERD/ERS basierten kognitiven Parametern bei Epilepsie. Anhand einer methodischen Untersuchung von dynamischen Eigenschaften wurde ein onlinefähiger ERD/ERS Algorithmus für zukünftige Neurofeedback Applikationen ausgewählt. Basierend auf dem ausgewählten Parameter wurde eine Methodik für die online Gewinnung und Quantifizierung von kognitionsbezogener induzierter Hirnaktivität entwickelt. Die dazugehörigen Prozeduren sind in Module organisiert, um die Prozessapplikabilität zu erhöhen. Mehrere Bestandteile der Methodik, einschließlich der Rolle von Elektrodenmontagen sowie die Eliminierung bzw. Reduktion der evozierten Aktivität, wurden anhand kognitiver Aufgaben evaluiert und optimiert. Die Entwicklung einer geeigneten Neurofeedback Strategie sowie die Bestätigung der psychophysiologischen Hypothese anhand einer Pilotstudie sollen Gegenstand der zukünftigen Arbeitschritte sein.Processing of electroencephalographic (EEG) signals is a key step towards understanding cognitive brain processes. Particularly, there is growing evidence that the analysis of induced brain oscillations is a powerful tool to analyze cognitive performance. Thus, the extraction of electrophysiological features characterizing not only cognitive processes but also cognitive dysfunctions by neurological diseases is fundamental. Especially in the case of epilepsy, cognitive dysfunctions such as memory or attentional problems are often present additionally to seizures. Neurofeedback (or EEG-biofeedback) is a psychological technique that, as a supplement to medication and surgical therapies, has been demonstrated to provide further improvement in many neurological diseases, including epilepsy. However, most efforts of neurofeedback have traditionally been dedicated to the reduction of seizure frequency, and little attention has been paid for improving cognitive deficits by means of specific electrophysiological changes. Furthermore, current neurofeedback approaches are not suitable for these purposes because the parameters used do not take into consideration the relationship between memory performance and event-induced brain activity. Considering all these aspects, the cognitive performance of a group of epilepsy patients and a group of healthy controls was analyzed based on the event-related de /synchronization (ERD/ERS) method. Significant differences between both populations in the theta and upper alpha bands were observed. These findings support the possible exploitation of cognitive quantitative parameters in epilepsy based on ERD/ERS. An algorithm for the online ERD/ERS calculation was selected for future neurofeedback applications, as the result of a comparative dynamic study. Subsequently, a methodology for the online extraction and quantification of cognitive-induced brain activity was developed based on the selected algorithm. The procedure is functionally organized in blocks of algorithms in order to increase applicability. Several aspects, including the role of electrode montages and the reduction or minimization of the evoked activity, were examined based on cognitive studies as part of the optimization process. Future steps should include the design of a special training paradigm as well as a pilot study for confirming the theoretical approach proposed in this work

    A hybrid brain-computer interface based on motor intention and visual working memory

    Get PDF
    Non-invasive electroencephalography (EEG) based brain-computer interface (BCI) is able to provide alternative means for people with disabilities to communicate with and control over external assistive devices. A hybrid BCI is designed and developed for following two types of system (control and monitor). Our first goal is to create a signal decoding strategy that allows people with limited motor control to have more command over potential prosthetic devices. Eight healthy subjects were recruited to perform visual cues directed reaching tasks. Eye and motion artifacts were identified and removed to ensure that the subjects\u27 visual fixation to the target locations would have little or no impact on the final result. We applied a Fisher Linear Discriminate (FLD) analysis for single-trial classification of the EEG to decode the intended arm movement in the left, right, and forward directions (before the onsets of actual movements). The mean EEG signal amplitude near the PPC region 271-310 ms after visual stimulation was found to be the dominant feature for best classification results. A signal scaling factor developed was found to improve the classification accuracy from 60.11% to 93.91% in the two-class (left versus right) scenario. This result demonstrated great promises for BCI neuroprosthetics applications, as motor intention decoding can be served as a prelude to the classification of imagined motor movement to assist in motor disable rehabilitation, such as prosthetic limb or wheelchair control. The second goal is to develop the adaptive training for patients with low visual working memory (VWM) capacity to improve cognitive abilities and healthy individuals who seek to enhance their intellectual performance. VWM plays a critical role in preserving and processing information. It is associated with attention, perception and reasoning, and its capacity can be used as a predictor of cognitive abilities. Recent evidence has suggested that with training, one can enhance the VWM capacity and attention over time. Not only can these studies reveal the characteristics of VWM load and the influences of training, they may also provide effective rehabilitative means for patients with low VWM capacity. However, few studies have investigated VWM over a long period of time, beyond 5-weeks. In this study, a combined behavioral approach and EEG was used to investigate VWM load, gain, and transfer. The results reveal that VWM capacity is directly correlated to the reaction time and contralateral delay amplitude (CDA). The approximate magic number 4 was observed through the event-related potentials (ERPs) waveforms, where the average capacity is 2.8-item from 15 participants. In addition, the findings indicate that VWM capacity can be improved through adaptive training. Furthermore, after training exercises, participants from the training group are able to improve their performance accuracies dramatically compared to the control group. Adaptive training gains on non-trained tasks can also be observed at 12 weeks after training. Therefore, we conclude that all participants can benefit from training gains, and augmented VWM capacity can be sustained over a long period of time. Our results suggest that this form of training can significantly improve cognitive function and may be useful for enhancing the user performance on neuroprosthetics device
    corecore