41 research outputs found

    Two-stage shape memory alloy identification based on the Hammerstein - Wiener model

    Get PDF
    from the two stages was obtained for a specific shape memory alloy wire and for specific environmental conditions. This data was used in the modeling process. The final model consists of a combination of the models from the two stages, which represent the behavior of the shape memory alloy actuator where the input signal is the pulse-width modulation signal and the output signal are the position of the actuator. Our results indicate that our model has a very similar response to the behavior of the real actuator. This model can be used to tune different control algorithms, simulate the entry system before manufacture and test on real devices.The research leading to these results has received funding from the Exoesqueleto para Diagnostico y Asistencia en Tareas de Manipulación (DPI2016-75346-R) Spanish research project and from RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by Programas de Actividades I + D en la Comunidad de Madrid and cofunded by Structural Funds of the EU

    Flexible shape memory alloy actuators for soft robotics: Modelling and control

    Get PDF
    One of the limitations in the development of really soft robotic devices is the development of soft actuators. In recent years, our research group has developed a new flexible shape memory alloy actuator that provides more freedom of movements and a better integration in wearable robots, especially in soft wearable robots. Shape memory alloy wires present characteristics such as force/weight ratio, low weight, and noiseless actuation, which make them an ideal choice in these types of applications. However, the control strategy must take into account its complex dynamics due to thermal phase transformation. Different control approaches based on complex non-linear models and other model-free control methods have been tested on real systems. Some exoskeleton prototypes have been developed, which demonstrate the utility of this actuator and the advantages offered by these flexible actuators to improve the comfort and adaptability of exoskeletons

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale

    Microstructural Analysis and Mechanical Characterization of Shape Memory Alloy Ni-Ti-Ag Synthesized by Casting Route

    Get PDF
    The purpose of the current research is to study the microstructure and mechanical properties of Ni-Ti-Ag shape memory alloys prepared by the casting route. Ag (grain size at 1 mm) was incorporated into Ni-Ti alloys at varying percentages of weight (0, 1.5, 3 and 4.5 wt.% Ag) to produce shape memory alloys using a Vacuum Arc Re-melting (VAR) furnace. Microstructural analysis was defined by FESEM microscopy and XRD examinations, while the transformation temperatures of the Ni-Ti-Ag shape memory alloy were determined by DSC examination. On the other hand, determination of mechanical properties was carried out using micro-hardness and compressive tests. The results of this work show that Ag was dispersed homogeneously into the Ni-Ti alloy. Moreover, two primary phases (austenite phase and martensite phase) emerged with few impurities. The results of the XRD examination show that the number of Ag peaks increased with the increase in weight percentage of Ag. The transformation temperature of the austenitic phase was defined as −1.6 ◦C by DSC. The mechanical characterizations increased with the increase in weight percentages of Ag (1.5, 3 and 4.5 wt.%), and significantly affected the mechanical properties of the Ni-Ti alloy. An improvement in compressive strength (42.478%) was found for the alloy with 3 wt.% Ag, while the micro-hardness results show a slight decrease in micro-hardness (8.858%) for the alloy with 4.5 wt.% Ag

    A Tutorial on Learning Human Welder\u27s Behavior: Sensing, Modeling, and Control

    Get PDF
    Human welder\u27s experiences and skills are critical for producing quality welds in manual GTAW process. Learning human welder\u27s behavior can help develop next generation intelligent welding machines and train welders faster. In this tutorial paper, various aspects of mechanizing the welder\u27s intelligence are surveyed, including sensing of the weld pool, modeling of the welder\u27s adjustments and this model-based control approach. Specifically, different sensing methods of the weld pool are reviewed and a novel 3D vision-based sensing system developed at University of Kentucky is introduced. Characterization of the weld pool is performed and human intelligent model is constructed, including an extensive survey on modeling human dynamics and neuro-fuzzy techniques. Closed-loop control experiment results are presented to illustrate the robustness of the model-based intelligent controller despite welding speed disturbance. A foundation is thus established to explore the mechanism and transformation of human welder\u27s intelligence into robotic welding system. Finally future research directions in this field are presented
    corecore