199 research outputs found

    Distributed Online Modified Greedy Algorithm for Networked Storage Operation under Uncertainty

    Full text link
    The integration of intermittent and stochastic renewable energy resources requires increased flexibility in the operation of the electric grid. Storage, broadly speaking, provides the flexibility of shifting energy over time; network, on the other hand, provides the flexibility of shifting energy over geographical locations. The optimal control of storage networks in stochastic environments is an important open problem. The key challenge is that, even in small networks, the corresponding constrained stochastic control problems on continuous spaces suffer from curses of dimensionality, and are intractable in general settings. For large networks, no efficient algorithm is known to give optimal or provably near-optimal performance for this problem. This paper provides an efficient algorithm to solve this problem with performance guarantees. We study the operation of storage networks, i.e., a storage system interconnected via a power network. An online algorithm, termed Online Modified Greedy algorithm, is developed for the corresponding constrained stochastic control problem. A sub-optimality bound for the algorithm is derived, and a semidefinite program is constructed to minimize the bound. In many cases, the bound approaches zero so that the algorithm is near-optimal. A task-based distributed implementation of the online algorithm relying only on local information and neighbor communication is then developed based on the alternating direction method of multipliers. Numerical examples verify the established theoretical performance bounds, and demonstrate the scalability of the algorithm.Comment: arXiv admin note: text overlap with arXiv:1405.778

    Moving from Linear to Conic Markets for Electricity

    Get PDF
    We propose a new forward electricity market framework that admits heterogeneous market participants with second-order cone strategy sets, who accurately express the nonlinearities in their costs and constraints through conic bids, and a network operator facing conic operational constraints. In contrast to the prevalent linear-programming-based electricity markets, we highlight how the inclusion of second-order cone constraints enables uncertainty-, asset- and network-awareness of the market, which is key to the successful transition towards an electricity system based on weather-dependent renewable energy sources. We analyze our general market-clearing proposal using conic duality theory to derive efficient spatially-differentiated prices for the multiple commodities, comprising of energy and flexibility services. Under the assumption of perfect competition, we prove the equivalence of the centrally-solved market-clearing optimization problem to a competitive spatial price equilibrium involving a set of rational and self-interested participants and a price setter. Finally, under common assumptions, we prove that moving towards conic markets does not incur the loss of desirable economic properties of markets, namely market efficiency, cost recovery and revenue adequacy. Our numerical studies focus on the specific use case of uncertainty-aware market design and demonstrate that the proposed conic market brings advantages over existing alternatives within the linear programming market framework.Comment: Manuscript with electronic companion; submitted to Operations Researc

    An Efficient Primal-Dual Approach to Chance-Constrained Economic Dispatch

    Full text link
    To effectively enhance the integration of distributed and renewable energy sources in future smart microgrids, economical energy management accounting for the principal challenge of the variable and non-dispatchable renewables is indispensable and of significant importance. Day-ahead economic generation dispatch with demand-side management for a microgrid in islanded mode is considered in this paper. With the goal of limiting the risk of the loss-of-load probability, a joint chance constrained optimization problem is formulated for the optimal multi-period energy scheduling with multiple wind farms. Bypassing the intractable spatio-temporal joint distribution of the wind power generation, a primal-dual approach is used to obtain a suboptimal solution efficiently. The method is based on first-order optimality conditions and successive approximation of the probabilistic constraint by generation of p-efficient points. Numerical results are reported to corroborate the merits of this approach.Comment: Appeared in 2014 North American Power Symposiu

    Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS

    Get PDF
    The problem of the optimal operation of battery energy storage systems (BESSs) in AC grids is addressed in this paper from the point of view of multi-objective optimization. A nonlinear programming (NLP) model is presented to minimize the total emissions of contaminant gasses to the atmosphere and costs of daily energy losses simultaneously, considering the AC grid complete model. The BESSs are modeled with their linear relation between the state-of-charge and the active power injection/absorption. The Pareto front for the multi-objective optimization NLP model is reached through the general algebraic modeling system, i.e., GAMS, implementing the pondered optimization approach using weighting factors for each objective function. Numerical results in the IEEE 33-bus and IEEE 69-node test feeders demonstrate the multi-objective nature of this optimization problem and the multiple possibilities that allow the grid operators to carry out an efficient operation of their distribution networks when BESS and renewable energy resources are introduced.Universidad TecnolĂłgica de BolĂ­va
    • …
    corecore