8,572 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Twenty-five years of sensor array and multichannel signal processing: a review of progress to date and potential research directions

    Get PDF
    In this article, a general introduction to the area of sensor array and multichannel signal processing is provided, including associated activities of the IEEE Signal Processing Society (SPS) Sensor Array and Multichannel (SAM) Technical Committee (TC). The main technological advances in five SAM subareas made in the past 25 years are then presented in detail, including beamforming, direction-of-arrival (DOA) estimation, sensor location optimization, target/source localization based on sensor arrays, and multiple-input multiple-output (MIMO) arrays. Six recent developments are also provided at the end to indicate possible promising directions for future SAM research, which are graph signal processing (GSP) for sensor networks; tensor-based array signal processing, quaternion-valued array signal processing, 1-bit and noncoherent sensor array signal processing, machine learning and artificial intelligence (AI) for sensor arrays; and array signal processing for next-generation communication systems

    Development of Flame Retardant and Antibacterial Dual Functionalised Flexible Polyurethane Foam

    Full text link
    Flexible Polyurethane foam (PUF), with its unique properties, such as lightweight and softness, has been utilised extensively. Nevertheless, owing to the intrinsic high flammability and low ignition temperature, PUF-associated fire risks are always a concern. During PUF’s combustion, excessive heat and toxic gases can be generated, threatening the health and life of human beings and causing huge property loss. Consequently, improving the flame retardancy of the PUF is of importance. Later, the global COVID-19 pandemic broke out in 2019, leading to the public’s increased awareness of maintaining good hygiene conditions. Since PUF products are frequently in contact with humans daily, rendering the PUF with bacterial-killing properties should also be addressed. This dissertation delivers studies on introducing flame retardancy to the PUF via a surface engineering method named the layer-by-layer (LbL) assembly. Due to the consequent COVID-19 situation, this thesis expands the investigations to endow the PUF with antibacterial performances. Preliminary research on fabricating a newly emerged two-dimensional material called MXene (Ti3C2) and chitosan (CH) as flame retardants (FRs) to impart fire safety performances to the PUF was conducted. With only 6.9 wt.% mass added to the PUF, unprecedented fire resistance and smoke suppression properties were received. It was revealed that the FR mechanism was ascribed to the hybrid coating’s excellent barrier and carbonisation effects. Further investigations on improving the PUFs’ biodegradability identified synergistic effects between the MXene with the CH and phytic acid, demonstrating the great potential for reducing the toxicity and improving the eco-friendliness of the PUFs. Additionally, this thesis analysed the FR and antibacterial dual-functionalised PUFs. The synthesised MXene, CH, and silver ion hybridised coating endows the foam with exceptional bactericidal properties with decreases of 99.7 % in gram-negative bacteria and 88.9 % in gram-positive bacteria compared with the unmodified counterpart. Excellent flame retardancy possessed by the dual-functionalised PUFs was discovered. The compatibility of the two functional coatings was evaluated and confirmed. The results manifest the great potential for eradicating the fire risks of PUFs and providing traditional PUF products with antibacterial properties, further expanding PUF’s applications

    Technology for Low Resolution Space Based RSO Detection and Characterisation

    Get PDF
    Space Situational Awareness (SSA) refers to all activities to detect, identify and track objects in Earth orbit. SSA is critical to all current and future space activities and protect space assets by providing access control, conjunction warnings, and monitoring status of active satellites. Currently SSA methods and infrastructure are not sufficient to account for the proliferations of space debris. In response to the need for better SSA there has been many different areas of research looking to improve SSA most of the requiring dedicated ground or space-based infrastructure. In this thesis, a novel approach for the characterisation of RSO’s (Resident Space Objects) from passive low-resolution space-based sensors is presented with all the background work performed to enable this novel method. Low resolution space-based sensors are common on current satellites, with many of these sensors being in space using them passively to detect RSO’s can greatly augment SSA with out expensive infrastructure or long lead times. One of the largest hurtles to overcome with research in the area has to do with the lack of publicly available labelled data to test and confirm results with. To overcome this hurtle a simulation software, ORBITALS, was created. To verify and validate the ORBITALS simulator it was compared with the Fast Auroral Imager images, which is one of the only publicly available low-resolution space-based images found with auxiliary data. During the development of the ORBITALS simulator it was found that the generation of these simulated images are computationally intensive when propagating the entire space catalog. To overcome this an upgrade of the currently used propagation method, Specialised General Perturbation Method 4th order (SGP4), was performed to allow the algorithm to run in parallel reducing the computational time required to propagate entire catalogs of RSO’s. From the results it was found that the standard facet model with a particle swarm optimisation performed the best estimating an RSO’s attitude with a 0.66 degree RMSE accuracy across a sequence, and ~1% MAPE accuracy for the optical properties. This accomplished this thesis goal of demonstrating the feasibility of low-resolution passive RSO characterisation from space-based platforms in a simulated environment

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    DATA AUGMENTATION FOR SYNTHETIC APERTURE RADAR USING ALPHA BLENDING AND DEEP LAYER TRAINING

    Get PDF
    Human-based object detection in synthetic aperture RADAR (SAR) imagery is complex and technical, laboriously slow but time critical—the perfect application for machine learning (ML). Training an ML network for object detection requires very large image datasets with imbedded objects that are accurately and precisely labeled. Unfortunately, no such SAR datasets exist. Therefore, this paper proposes a method to synthesize wide field of view (FOV) SAR images by combining two existing datasets: SAMPLE, which is composed of both real and synthetic single-object chips, and MSTAR Clutter, which is composed of real wide-FOV SAR images. Synthetic objects are extracted from SAMPLE using threshold-based segmentation before being alpha-blended onto patches from MSTAR Clutter. To validate the novel synthesis method, individual object chips are created and classified using a simple convolutional neural network (CNN); testing is performed against the measured SAMPLE subset. A novel technique is also developed to investigate training activity in deep layers. The proposed data augmentation technique produces a 17% increase in the accuracy of measured SAR image classification. This improvement shows that any residual artifacts from segmentation and blending do not negatively affect ML, which is promising for future use in wide-area SAR synthesis.Outstanding ThesisMajor, United States Air ForceApproved for public release. Distribution is unlimited

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Evaluation of Multi-frequency Synthetic Aperture Radar for Subsurface Archaeological Prospection in Arid Environments

    Full text link
    The discovery of the subsurface paleochannels in the Saharan Desert with the 1981 Shuttle Imaging Radar (SIR-A) sensor was hugely significant in the field of synthetic aperture radar (SAR) remote sensing. Although previous studies had indicated the ability of microwaves to penetrate the earth’s surface in arid environments, this was the first applicable instance of subsurface imaging using a spaceborne sensor. And the discovery of the ‘radar rivers’ with associated archaeological evidence in this inhospitable environment proved the existence of an earlier less arid paleoclimate that supported past populations. Since the 1980’s SAR subsurface prospection in arid environments has progressed, albeit primarily in the fields of hydrology and geology, with archaeology being investigated to a lesser extent. Currently there is a lack of standardised methods for data acquisition and processing regarding subsurface imaging, difficulties in image interpretation and insufficient supporting quantitative verification. These barriers keep SAR technology from becoming as integral as other remote sensing techniques in archaeological practice The main objective of this thesis is to undertake a multi-frequency SAR analysis across different site types in arid landscapes to evaluate and enhance techniques for analysing SAR within the context of archaeological subsurface prospection. The analysis and associated fieldwork aim to address the gap in the literature regarding field verification of SAR image interpretation and contribute to the understanding of SAR microwave penetration in arid environments. The results presented in this thesis demonstrate successful subsurface imaging of subtle feature(s) at the site of ‘Uqdat al-Bakrah, Oman with X-band data. Because shorter wavelengths are often ignored due to their limited penetration depths as compared to the C-band or L-band data, the effectiveness of X-band sensors in archaeological prospection at this site is significant. In addition, the associated ground penetrating radar and excavation fieldwork undertaken at ‘Uqdat al-Bakrah confirm the image interpretation and support the quantitative information regarding microwave penetration
    • …
    corecore