2,803 research outputs found

    Testing Linear Inequalities of Subgraph Statistics

    Get PDF
    Property testers are fast randomized algorithms whose task is to distinguish between inputs satisfying some predetermined property ? and those that are far from satisfying it. Since these algorithms operate by inspecting a small randomly selected portion of the input, the most natural property one would like to be able to test is whether the input does not contain certain forbidden small substructures. In the setting of graphs, such a result was obtained by Alon et al., who proved that for any finite family of graphs ?, the property of being induced ?-free (i.e. not containing an induced copy of any F ? ?) is testable. It is natural to ask if one can go one step further and prove that more elaborate properties involving induced subgraphs are also testable. One such generalization of the result of Alon et al. was formulated by Goldreich and Shinkar who conjectured that for any finite family of graphs ?, and any linear inequality involving the densities of the graphs F ? ? in the input graph, the property of satisfying this inequality can be tested in a certain restricted model of graph property testing. Our main result in this paper disproves this conjecture in the following strong form: some properties of this type are not testable even in the classical (i.e. unrestricted) model of graph property testing. The proof deviates significantly from prior non-testability results in this area. The main idea is to use a linear inequality relating induced subgraph densities in order to encode the property of being a pseudo-random graph

    A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

    Full text link
    Let P\mathcal{P} be a property of function Fpn→{0,1}\mathbb{F}_p^n \to \{0,1\} for a fixed prime pp. An algorithm is called a tester for P\mathcal{P} if, given a query access to the input function ff, with high probability, it accepts when ff satisfies P\mathcal{P} and rejects when ff is "far" from satisfying P\mathcal{P}. In this paper, we give a characterization of affine-invariant properties that are (two-sided error) testable with a constant number of queries. The characterization is stated in terms of decomposition theorems, which roughly claim that any function can be decomposed into a structured part that is a function of a constant number of polynomials, and a pseudo-random part whose Gowers norm is small. We first give an algorithm that tests whether the structured part of the input function has a specific form. Then we show that an affine-invariant property is testable with a constant number of queries if and only if it can be reduced to the problem of testing whether the structured part of the input function is close to one of a constant number of candidates.Comment: 27 pages, appearing in STOC 2014. arXiv admin note: text overlap with arXiv:1306.0649, arXiv:1212.3849 by other author

    Partial tests, universal tests and decomposability

    Get PDF
    For a property P and a sub-property P', we say that P is P'-partially testable with q queries} if there exists an algorithm that distinguishes, with high probability, inputs in P' from inputs ε-far from P, using q queries. Some natural properties require many queries to test, but can be partitioned into a small number of subsets for which they are partially testable with very few queries, sometimes even a number independent of the input size. For properties over {0,1}, the notion of being thus partitionable ties in closely with Merlin-Arthur proofs of Proximity (MAPs) as defined independently in [14] a partition into r partially-testable properties is the same as a Merlin-Arthur system where the proof consists of the identity of one of the r partially-testable properties, giving a 2-way translation to an O(log r) size proof. Our main result is that for some low complexity properties a partition as above cannot exist, and moreover that for each of our properties there does not exist even a single sub-property featuring both a large size and a query-efficient partial test, in particular improving the lower bound set in [14]. For this we use neither the traditional Yao-type arguments nor the more recent communication complexity method, but open up a new approach for proving lower bounds. First, we use entropy analysis, which allows us to apply our arguments directly to 2-sided tests, thus avoiding the cost of the conversion in [14] from 2-sided to 1-sided tests. Broadly speaking we use "distinguishing instances" of a supposed test to show that a uniformly random choice of a member of the sub-property has "low entropy areas", ultimately leading to it having a low total entropy and hence having a small base set. Additionally, to have our arguments apply to adaptive tests, we use a mechanism of "rearranging" the input bits (through a decision tree that adaptively reads the entire input) to expose the low entropy that would otherwise not be apparent. We also explore the possibility of a connection in the other direction, namely whether the existence of a good partition (or MAP) can lead to a relatively query-efficient standard property test. We provide some preliminary results concerning this question, including a simple lower bound on the possible trade-off. Our second major result is a positive trade-off result for the restricted framework of 1-sided proximity oblivious tests. This is achieved through the construction of a "universal tester" that works the same for all properties admitting the restricted test. Our tester is very related to the notion of sample-based testing (for a non-constant number of queries) as defined by Goldreich and Ron in [13]. In particular it partially resolves an open problem raised by [13]

    Proofs of proximity for context-free languages and read-once branching programs

    Get PDF
    Proofs of proximity are probabilistic proof systems in which the verifier only queries a sub-linear number of input bits, and soundness only means that, with high probability, the input is close to an accepting input. In their minimal form, called Merlin-Arthur proofs of proximity ( MAP ), the verifier receives, in addition to query access to the input, also free access to an explicitly given short (sub-linear) proof. A more general notion is that of an interactive proof of proximity ( IPP ), in which the verifier is allowed to interact with an all-powerful, yet untrusted, prover. MAP s and IPP s may be thought of as the NP and IP analogues of property testing, respectively

    Every set in P is strongly testable under a suitable encoding

    Get PDF
    We show that every set in P is strongly testable under a suitable encoding. By "strongly testable" we mean having a (proximity oblivious) tester that makes a constant number of queries and rejects with probability that is proportional to the distance of the tested object from the property. By a "suitable encoding" we mean one that is polynomial-time computable and invertible. This result stands in contrast to the known fact that some sets in P are extremely hard to test, providing another demonstration of the crucial role of representation in the context of property testing. The testing result is proved by showing that any set in P has a strong canonical PCP, where canonical means that (for yes-instances) there exists a single proof that is accepted with probability 1 by the system, whereas all other potential proofs are rejected with probability proportional to their distance from this proof. In fact, we show that UP equals the class of sets having strong canonical PCPs (of logarithmic randomness), whereas the class of sets having strong canonical PCPs with polynomial proof length equals "unambiguous- MA". Actually, for the testing result, we use a PCP-of-Proximity version of the foregoing notion and an analogous positive result (i.e., strong canonical PCPPs of logarithmic randomness for any set in UP)

    On sample-based testers

    Get PDF
    The standard definition of property testing endows the tester with the ability to make arbitrary queries to “elements ” of the tested object. In contrast, sample-based testers only obtain independently distributed elements (a.k.a. labeled samples) of the tested object. While samplebased testers were defined by Goldreich, Goldwasser, and Ron (JACM 1998), most research in property testing is focused on query-based testers. In this work, we advance the study of sample-based property testers by providing several general positive results as well as by revealing relations between variants of this testing model. In particular: • We show that certain types of query-based testers yield sample-based testers of sublinear sample complexity. For example, this holds for a natural class of proximity oblivious testers. • We study the relation between distribution-free sample-based testers and one-sided error sample-based testers w.r.t the uniform distribution. While most of this work ignores the time complexity of testing, one part of it does focus on this aspect. The main result in this part is a sublinear-time sample-based tester for k-Colorability, for any k ≥ 2

    Testing Local Properties of Arrays

    Get PDF
    We study testing of local properties in one-dimensional and multi-dimensional arrays. A property of d-dimensional arrays f:[n]^d -> Sigma is k-local if it can be defined by a family of k x ... x k forbidden consecutive patterns. This definition captures numerous interesting properties. For example, monotonicity, Lipschitz continuity and submodularity are 2-local; convexity is (usually) 3-local; and many typical problems in computational biology and computer vision involve o(n)-local properties. In this work, we present a generic approach to test all local properties of arrays over any finite (and not necessarily bounded size) alphabet. We show that any k-local property of d-dimensional arrays is testable by a simple canonical one-sided error non-adaptive epsilon-test, whose query complexity is O(epsilon^{-1}k log{(epsilon n)/k}) for d = 1 and O(c_d epsilon^{-1/d} k * n^{d-1}) for d > 1. The queries made by the canonical test constitute sphere-like structures of varying sizes, and are completely independent of the property and the alphabet Sigma. The query complexity is optimal for a wide range of parameters: For d=1, this matches the query complexity of many previously investigated local properties, while for d > 1 we design and analyze new constructions of k-local properties whose one-sided non-adaptive query complexity matches our upper bounds. For some previously studied properties, our method provides the first known sublinear upper bound on the query complexity
    • …
    corecore