7 research outputs found

    Biometric Cryptosystems : Authentication, Encryption and Signature for Biometric Identities

    Get PDF
    Biometrics have been used for secure identification and authentication for more than two decades since biometric data is unique, non-transferable, unforgettable, and always with us. Recently, biometrics has pervaded other aspects of security applications that can be listed under the topic of ``Biometric Cryptosystems''. Although the security of some of these systems is questionable when they are utilized alone, integration with other technologies such as digital signatures or Identity Based Encryption (IBE) schemes results in cryptographically secure applications of biometrics. It is exactly this field of biometric cryptosystems that we focused in this thesis. In particular, our goal is to design cryptographic protocols for biometrics in the framework of a realistic security model with a security reduction. Our protocols are designed for biometric based encryption, signature and remote authentication. We first analyze the recently introduced biometric remote authentication schemes designed according to the security model of Bringer et al.. In this model, we show that one can improve the database storage cost significantly by designing a new architecture, which is a two-factor authentication protocol. This construction is also secure against the new attacks we present, which disprove the claimed security of remote authentication schemes, in particular the ones requiring a secure sketch. Thus, we introduce a new notion called ``Weak-identity Privacy'' and propose a new construction by combining cancelable biometrics and distributed remote authentication in order to obtain a highly secure biometric authentication system. We continue our research on biometric remote authentication by analyzing the security issues of multi-factor biometric authentication (MFBA). We formally describe the security model for MFBA that captures simultaneous attacks against these systems and define the notion of user privacy, where the goal of the adversary is to impersonate a client to the server. We design a new protocol by combining bipartite biotokens, homomorphic encryption and zero-knowledge proofs and provide a security reduction to achieve user privacy. The main difference of this MFBA protocol is that the server-side computations are performed in the encrypted domain but without requiring a decryption key for the authentication decision of the server. Thus, leakage of the secret key of any system component does not affect the security of the scheme as opposed to the current biometric systems involving cryptographic techniques. We also show that there is a tradeoff between the security level the scheme achieves and the requirement for making the authentication decision without using any secret key. In the second part of the thesis, we delve into biometric-based signature and encryption schemes. We start by designing a new biometric IBS system that is based on the currently most efficient pairing based signature scheme in the literature. We prove the security of our new scheme in the framework of a stronger model compared to existing adversarial models for fuzzy IBS, which basically simulates the leakage of partial secret key components of the challenge identity. In accordance with the novel features of this scheme, we describe a new biometric IBE system called as BIO-IBE. BIO-IBE differs from the current fuzzy systems with its key generation method that not only allows for a larger set of encryption systems to function for biometric identities, but also provides a better accuracy/identification of the users in the system. In this context, BIO-IBE is the first scheme that allows for the use of multi-modal biometrics to avoid collision attacks. Finally, BIO-IBE outperforms the current schemes and for small-universe of attributes, it is secure in the standard model with a better efficiency compared to its counterpart. Another contribution of this thesis is the design of biometric IBE systems without using pairings. In fact, current fuzzy IBE schemes are secure under (stronger) bilinear assumptions and the decryption of each message requires pairing computations almost equal to the number of attributes defining the user. Thus, fuzzy IBE makes error-tolerant encryption possible at the expense of efficiency and security. Hence, we design a completely new construction for biometric IBE based on error-correcting codes, generic conversion schemes and weakly secure anonymous IBE schemes that encrypt a message bit by bit. The resulting scheme is anonymous, highly secure and more efficient compared to pairing-based biometric IBE, especially for the decryption phase. The security of our generic construction is reduced to the security of the anonymous IBE scheme, which is based on the Quadratic Residuosity assumption. The binding of biometric features to the user's identity is achieved similar to BIO-IBE, thus, preserving the advantages of its key generation procedure

    INFORMATION SECURITY: A STUDY ON BIOMETRIC SECURITY SOLUTIONS FOR TELECARE MEDICAL INFORMATION SYSTEMS

    Get PDF
    This exploratory study provides a means for evaluating and rating Telecare medical information systems in order to provide a more effective security solution. This analysis of existing solutions was conducted via an in-depth study of Telecare security. This is a proposition for current biometric technologies as a new means for secure communication of private information over public channels. Specifically, this research was done in order to provide a means for businesses to evaluate prospective technologies from a 3 dimensional view in order to make am accurate decision on any given biometric security technology. Through identifying key aspects of what makes a security solution the most effective in minimizing risk of a patient’s confidential data being exposed we were then able to create a 3 dimensional rubric to see not only from a business view but also the users such as the patients and doctors that use Telecare medical information systems every day. Finally, we also need to understand the implications of biometric solutions from a technological standpoint

    Framework for privacy-aware content distribution in peer-to- peer networks with copyright protection

    Get PDF
    The use of peer-to-peer (P2P) networks for multimedia distribution has spread out globally in recent years. This mass popularity is primarily driven by the efficient distribution of content, also giving rise to piracy and copyright infringement as well as privacy concerns. An end user (buyer) of a P2P content distribution system does not want to reveal his/her identity during a transaction with a content owner (merchant), whereas the merchant does not want the buyer to further redistribute the content illegally. Therefore, there is a strong need for content distribution mechanisms over P2P networks that do not pose security and privacy threats to copyright holders and end users, respectively. However, the current systems being developed to provide copyright and privacy protection to merchants and end users employ cryptographic mechanisms, which incur high computational and communication costs, making these systems impractical for the distribution of big files, such as music albums or movies.El uso de soluciones de igual a igual (peer-to-peer, P2P) para la distribución multimedia se ha extendido mundialmente en los últimos años. La amplia popularidad de este paradigma se debe, principalmente, a la distribución eficiente de los contenidos, pero también da lugar a la piratería, a la violación del copyright y a problemas de privacidad. Un usuario final (comprador) de un sistema de distribución de contenidos P2P no quiere revelar su identidad durante una transacción con un propietario de contenidos (comerciante), mientras que el comerciante no quiere que el comprador pueda redistribuir ilegalmente el contenido más adelante. Por lo tanto, existe una fuerte necesidad de mecanismos de distribución de contenidos por medio de redes P2P que no supongan un riesgo de seguridad y privacidad a los titulares de derechos y los usuarios finales, respectivamente. Sin embargo, los sistemas actuales que se desarrollan con el propósito de proteger el copyright y la privacidad de los comerciantes y los usuarios finales emplean mecanismos de cifrado que implican unas cargas computacionales y de comunicaciones muy elevadas que convierten a estos sistemas en poco prácticos para distribuir archivos de gran tamaño, tales como álbumes de música o películas.L'ús de solucions d'igual a igual (peer-to-peer, P2P) per a la distribució multimèdia s'ha estès mundialment els darrers anys. L'àmplia popularitat d'aquest paradigma es deu, principalment, a la distribució eficient dels continguts, però també dóna lloc a la pirateria, a la violació del copyright i a problemes de privadesa. Un usuari final (comprador) d'un sistema de distribució de continguts P2P no vol revelar la seva identitat durant una transacció amb un propietari de continguts (comerciant), mentre que el comerciant no vol que el comprador pugui redistribuir il·legalment el contingut més endavant. Per tant, hi ha una gran necessitat de mecanismes de distribució de continguts per mitjà de xarxes P2P que no comportin un risc de seguretat i privadesa als titulars de drets i els usuaris finals, respectivament. Tanmateix, els sistemes actuals que es desenvolupen amb el propòsit de protegir el copyright i la privadesa dels comerciants i els usuaris finals fan servir mecanismes d'encriptació que impliquen unes càrregues computacionals i de comunicacions molt elevades que fan aquests sistemes poc pràctics per a distribuir arxius de grans dimensions, com ara àlbums de música o pel·lícules

    Social, Private, and Trusted Wearable Technology under Cloud-Aided Intermittent Wireless Connectivity

    Get PDF
    There has been an unprecedented increase in the use of smart devices globally, together with novel forms of communication, computing, and control technologies that have paved the way for a new category of devices, known as high-end wearables. While massive deployments of these objects may improve the lives of people, unauthorized access to the said private equipment and its connectivity is potentially dangerous. Hence, communication enablers together with highly-secure human authentication mechanisms have to be designed.In addition, it is important to understand how human beings, as the primary users, interact with wearable devices on a day-to-day basis; usage should be comfortable, seamless, user-friendly, and mindful of urban dynamics. Usually the connectivity between wearables and the cloud is executed through the user’s more power independent gateway: this will usually be a smartphone, which may have potentially unreliable infrastructure connectivity. In response to these unique challenges, this thesis advocates for the adoption of direct, secure, proximity-based communication enablers enhanced with multi-factor authentication (hereafter refereed to MFA) that can integrate/interact with wearable technology. Their intelligent combination together with the connection establishment automation relying on the device/user social relations would allow to reliably grant or deny access in cases of both stable and intermittent connectivity to the trusted authority running in the cloud.The introduction will list the main communication paradigms, applications, conventional network architectures, and any relevant wearable-specific challenges. Next, the work examines the improved architecture and security enablers for clusterization between wearable gateways with a proximity-based communication as a baseline. Relying on this architecture, the author then elaborates on the social ties potentially overlaying the direct connectivity management in cases of both reliable and unreliable connection to the trusted cloud. The author discusses that social-aware cooperation and trust relations between users and/or the devices themselves are beneficial for the architecture under proposal. Next, the author introduces a protocol suite that enables temporary delegation of personal device use dependent on different connectivity conditions to the cloud.After these discussions, the wearable technology is analyzed as a biometric and behavior data provider for enabling MFA. The conventional approaches of the authentication factor combination strategies are compared with the ‘intelligent’ method proposed further. The assessment finds significant advantages to the developed solution over existing ones.On the practical side, the performance evaluation of existing cryptographic primitives, as part of the experimental work, shows the possibility of developing the experimental methods further on modern wearable devices.In summary, the set of enablers developed here for wearable technology connectivity is aimed at enriching people’s everyday lives in a secure and usable way, in cases when communication to the cloud is not consistently available

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    corecore