1,029 research outputs found

    The one-round Voronoi game replayed

    Get PDF
    We consider the one-round Voronoi game, where player one (``White'', called ``Wilma'') places a set of n points in a rectangular area of aspect ratio r <=1, followed by the second player (``Black'', called ``Barney''), who places the same number of points. Each player wins the fraction of the board closest to one of his points, and the goal is to win more than half of the total area. This problem has been studied by Cheong et al., who showed that for large enough nn and r=1, Barney has a strategy that guarantees a fraction of 1/2+a, for some small fixed a. We resolve a number of open problems raised by that paper. In particular, we give a precise characterization of the outcome of the game for optimal play: We show that Barney has a winning strategy for n>2 and r>sqrt{2}/n, and for n=2 and r>sqrt{3}/2. Wilma wins in all remaining cases, i.e., for n>=3 and r<=sqrt{2}/n, for n=2 and r<=sqrt{3}/2, and for n=1. We also discuss complexity aspects of the game on more general boards, by proving that for a polygon with holes, it is NP-hard to maximize the area Barney can win against a given set of points by Wilma.Comment: 14 pages, 6 figures, Latex; revised for journal version, to appear in Computational Geometry: Theory and Applications. Extended abstract version appeared in Workshop on Algorithms and Data Structures, Springer Lecture Notes in Computer Science, vol.2748, 2003, pp. 150-16

    On One-Round Discrete Voronoi Games

    Get PDF
    Let V be a multiset of n points in R^d, which we call voters, and let k >=slant 1 and l >=slant 1 be two given constants. We consider the following game, where two players P and Q compete over the voters in V: First, player P selects a set P of k points in R^d, and then player Q selects a set Q of l points in R^d. Player P wins a voter v in V iff dist(v,P) <=slant dist(v,Q), where dist(v,P) := min_{p in P} dist(v,p) and dist(v,Q) is defined similarly. Player P wins the game if he wins at least half the voters. The algorithmic problem we study is the following: given V, k, and l, how efficiently can we decide if player P has a winning strategy, that is, if P can select his k points such that he wins the game no matter where Q places her points. Banik et al. devised a singly-exponential algorithm for the game in R^1, for the case k=l. We improve their result by presenting the first polynomial-time algorithm for the game in R^1. Our algorithm can handle arbitrary values of k and l. We also show that if d >= 2, deciding if player P has a winning strategy is Sigma_2^P-hard when k and l are part of the input. Finally, we prove that for any dimension d, the problem is contained in the complexity class exists for all R, and we give an algorithm that works in polynomial time for fixed k and l

    The Discrete Voronoi game in &Ropf;\u3csup\u3e2\u3c/sup\u3e

    Get PDF
    In this paper we study the last round of the discrete Voronoi game in ℝ2, a problem which is also of independent interest in competitive facility location. The game consists of two players P1 and P2, and a finite set U of users in the plane. The players have already placed two disjoint sets of facilities F and S, respectively, in the plane. The game begins with P1 placing a new facility followed by P2 placing another facility, and the objective of both the players is to maximize their own total payoffs. In this paper we propose polynomial time algorithms for determining the optimal strategies of both the players for arbitrarily located existing facilities F and S. We show that in the L1 and the L∞ metrics, the optimal strategy of P2, given any placement of P1, can be found in O(n log n) time, and the optimal strategy of P1 can be found in O(n5 log n) time. In the L2 metric, the optimal strategies of P2 and P1 can be obtained in O(n2) and O(n2) and O(n8) times, respectively

    Improved Bounds for Discrete Voronoi Games

    Get PDF

    Advantage in the discrete Voronoi game

    Get PDF
    We study the discrete Voronoi game, where two players alternately claim vertices of a graph for t rounds. In the end, the remaining vertices are divided such that each player receives the vertices that are closer to his or her claimed vertices. We prove that there are graphs for which the second player gets almost all vertices in this game, but this is not possible for bounded-degree graphs. For trees, the first player can get at least one quarter of the vertices, and we give examples where she can get only little more than one third of them. We make some general observations, relating the result with many rounds to the result for the one-round game on the same graph

    New Variations of the Maximum Coverage Facility Location Problem

    Get PDF
    Consider a competitive facility location scenario where, given a set U of n users and a set F of m facilities in the plane, the objective is to place a new facility in an appropriate place such that the number of users served by the new facility is maximized. Here users and facilities are considered as points in the plane, and each user takes service from its nearest facility, where the distance between a pair of points is measured in either L1 or L2 or L∞ metric. This problem is also known as the maximum coverage (MaxCov) problem. In this paper, we will consider the k-MaxCov problem, where the objective is to place k (â©Ÿ1) new facilities such that the total number of users served by these k new facilities is maximized. We begin by proposing an O(nlogn) time algorithm for the k-MaxCov problem, when the existing facilities are all located on a single straight line and the new facilities are also restricted to lie on the same line. We then study the 2-MaxCov problem in the plane, and propose an O(n2) time and space algorithm in the L1 and L∞ metrics. In the L2 metric, we solve the 2-MaxCov problem in the plane in O(n3logn) time and O(n2logn) space. Finally, we consider the 2-Farthest-MaxCov problem, where a user is served by its farthest facility, and propose an algorithm that runs in O(nlogn) time, in all the three metrics
    • 

    corecore