154 research outputs found

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    A feasibility study on the application of polarimetric decomposition algorithms to the detection of concealed weapons

    Get PDF
    State of the art security screening technology is not meeting all modern day requirements. There exists a gap in the market for the development of real time systems capable of detecting weapons at standoff ranges. Researchers at the Centre of Sensing and Imaging at Manchester Metropolitan University have developed a radar based screening technology. This technology will offer new security screening capabilities, making it feasible to have portable systems that can detect concealed weapons, with the added advantage of being capable of screening people in a crowd. The next step in the development of this radar system is to investigate the potential of using polarimetric scattering effects to detect concealed weapons, with the aim of improving the robustness and detection capabilities in comparison with the current state-of-the-art systems. This thesis provides a feasibility study in the application of polarimetric decomposition techniques to Concealed Weapon Detection (CWD) and an experimental radar is developed to provide the measurements required for this study. The major outcome of this work is that polarimetric decompositions including the Pauli, Krogager SDH and H-α decompositions have been demonstrated as a viable means of interpreting data for the detection of concealed weapons. This will allow the next generation of radar based weapon detectors to reduce some of the orientation dependency on detection rates as observed in the current state-of-the-art systems. The work presented in this thesis has resulted in a clear understanding of what is required to implement a fully polarimetric radar based weapon detector. The detection of weapons using the developed fully polarimetric radar with the aid of polarimetric decomposition algorithms combined with calibration and signal-processing algorithms has been demonstrated in this thesis

    Mixed Compressive Sensing Back-Projection for SAR Focusing on Geocoded Grid

    Get PDF
    This article presents a new scheme called 2-D mixed compressive sensing back-projection (CS-BP-2D), for synthetic aperture radar (SAR) imaging on a geocoded grid, in a single measurement vector frame. The back-projection linear operator is derived in matrix form and a patched-based approach is proposed for reducing the dimensions of the dictionary. Spatial compressibility of the radar image is exploited by constructing the sparsity basis using the back-projection focusing framework and fast solving the reconstruction problem through the orthogonal matching pursuit algorithm. An artifact reduction filter inspired by the synthetic point spread function is used in postprocessing. The results are validated for simulated and real-world SAR data. Sentinel-1 C-band raw data in both monostatic and space-borne transmitter/stationary receiver bistatic configurations are tested. We show that CS-BP-2D can focus both monostatic and bistatic SAR images, using fewer measurements than the classical approach, while preserving the amplitude, the phase, and the position of the targets. Furthermore, the SAR image quality is enhanced and also the storage burden is reduced by storing only the recovered complex-valued points and their corresponding locations

    On the Design of a Super Wideband Antenna

    Get PDF
    corecore