1,397 research outputs found

    Wireless Sensor Networks for Condition Monitoring in the Railway Industry : a Survey

    Get PDF
    In recent years, the range of sensing technologies has expanded rapidly, whereas sensor devices have become cheaper. This has led to a rapid expansion in condition monitoring of systems, structures, vehicles, and machinery using sensors. Key factors are the recent advances in networking technologies such as wireless communication and mobile adhoc networking coupled with the technology to integrate devices. Wireless sensor networks (WSNs) can be used for monitoring the railway infrastructure such as bridges, rail tracks, track beds, and track equipment along with vehicle health monitoring such as chassis, bogies, wheels, and wagons. Condition monitoring reduces human inspection requirements through automated monitoring, reduces maintenance through detecting faults before they escalate, and improves safety and reliability. This is vital for the development, upgrading, and expansion of railway networks. This paper surveys these wireless sensors network technology for monitoring in the railway industry for analyzing systems, structures, vehicles, and machinery. This paper focuses on practical engineering solutions, principally,which sensor devices are used and what they are used for; and the identification of sensor configurations and network topologies. It identifies their respective motivations and distinguishes their advantages and disadvantages in a comparative review

    Investigation on Design and Development Methods for Internet of Things

    Get PDF
    The thesis work majorly focuses on the development methodologies of the Internet of Things (IoT). A detailed literature survey is presented for the discussion of various challenges in the development of software and design and deployment of hardware. The thesis work deals with the efficient development methodologies for the deployment of IoT system. Efficient hardware and software development reduces the risk of the system bugs and faults. The optimal placement of the IoT devices is the major challenge for the monitoring application. A Qualitative Spatial Reasoning (QSR) and Qualitative Temporal Reasoning (QTR) methodologies are proposed to build software systems. The proposed hybrid methodology includes the features of QSR, QTR, and traditional databased methodologies. The hybrid methodology is proposed to build the software systems and direct them to the specific goal of obtaining outputs inherent to the process. The hybrid methodology includes the support of tools and is detailed, integrated, and fits the general proposal. This methodology repeats the structure of Spatio-temporal reasoning goals. The object-oriented IoT device placement is the major goal of the proposed work. Segmentation and object detection is used for the division of the region into sub-regions. The coverage and connectivity are maintained by the optimal placement of the IoT devices using RCC8 and TPCC algorithms. Over the years, IoT has offered different solutions in all kinds of areas and contexts. The diversity of these challenges makes it hard to grasp the underlying principles of the different solutions and to design an appropriate custom implementation on the IoT space. One of the major objective of the proposed thesis work is to study numerous production-ready IoT offerings, extract recurring proven solution principles, and classify them into spatial patterns. The method of refinement of the goals is employed so that complex challenges are solved by breaking them down into simple and achievable sub-goals. The work deals with the major sub-goals e.g. efficient coverage of the field, connectivity of the IoT devices, Spatio-temporal aggregation of the data, and estimation of spatially connected regions of event detection. We have proposed methods to achieve each sub-goal for all different types of spatial patterns. The spatial patterns developed can be used in ongoing and future research on the IoT to understand the principles of the IoT, which will, in turn, promote the better development of existing and new IoT devices. The next objective is to utilize the IoT network for enterprise architecture (EA) based IoT application. EA defines the structure and operation of an organization to determine the most effective way for it to achieve its objectives. Digital transformation of EA is achieved through analysis, planning, design, and implementation, which interprets enterprise goals into an IoT-enabled enterprise design. A blueprint is necessary for the readying of IT resources that support business services and processes. A systematic approach is proposed for the planning and development of EA for IoT-Applications. The Enterprise Interface (EI) layer is proposed to efficiently categorize the data. The data is categorized based on local and global factors. The clustered data is then utilized by the end-users. A novel four-tier structure is proposed for Enterprise Applications. We analyzed the challenges, contextualized them, and offered solutions and recommendations. The last objective of the thesis work is to develop energy-efficient data consistency method. The data consistency is a challenge for designing energy-efficient medium access control protocol used in IoT. The energy-efficient data consistency method makes the protocol suitable for low, medium, and high data rate applications. The idea of energyefficient data consistency protocol is proposed with data aggregation. The proposed protocol efficiently utilizes the data rate as well as saves energy. The optimal sampling rate selection method is introduced for maintaining the data consistency of continuous and periodic monitoring node in an energy-efficient manner. In the starting phase, the nodes will be classified into event and continuous monitoring nodes. The machine learning based logistic classification method is used for the classification of nodes. The sampling rate of continuous monitoring nodes is optimized during the setup phase by using optimized sampling rate data aggregation algorithm. Furthermore, an energy-efficient time division multiple access (EETDMA) protocol is used for the continuous monitoring on IoT devices, and an energy-efficient bit map assisted (EEBMA) protocol is proposed for the event driven nodes

    Sustainable Forest Management Techniques

    Get PDF

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    An optimized discrete wavelet transform compression technique for image transferring over wireless multimedia sensor network

    Get PDF
    Transferring images in a wireless multimedia sensor network (WMSN) knows a fast development in both research and fields of application. Nevertheless, this area of research faces many problems such as the low quality of the received images after their decompression, the limited number of reconstructed images at the base station, and the high-energy consumption used in the process of compression and decompression. In order to fix these problems, we proposed a compression method based on the classic discrete wavelet transform (DWT). Our method applies the wavelet compression technique multiple times on the same image. As a result, we found that the number of received images is higher than using the classic DWT. In addition, the quality of the received images is much higher compared to the standard DWT. Finally, the energy consumption is lower when we use our technique. Therefore, we can say that our proposed compression technique is more adapted to the WMSN environment

    Network-based business process management: embedding business logic in communications networks

    Get PDF
    Advanced Business Process Management (BPM) tools enable the decomposition of previously integrated and often ill-defined processes into re-usable process modules. These process modules can subsequently be distributed on the Internet over a variety of many different actors, each with their own specialization and economies-of-scale. The economic benefits of process specialization can be huge. However, how should such actors in a business network find, select, and control, the best partner for what part of the business process, in such a way that the best result is achieved? This particular management challenge requires more advanced techniques and tools in the enabling communications networks. An approach has been developed to embed business logic into the communications networks in order to optimize the allocation of business resources from a network point of view. Initial experimental results have been encouraging while at the same time demonstrating the need for more robust techniques in a future of massively distributed business processes.active networks;business process management;business protocols;embedded business logic;genetic algorithms;internet distributed process management;payment systems;programmable networks;resource optimization

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided
    corecore