283 research outputs found

    Convolutional and tail-biting quantum error-correcting codes

    Full text link
    Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to 4096 states and minimum distances up to 10 are constructed as stabilizer codes from classical self-orthogonal rate-1/n F_4-linear and binary linear convolutional codes, respectively. These codes generally have higher rate and less decoding complexity than comparable quantum block codes or previous quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same rate and error-correction capability and essentially the same decoding algorithms are derived from these convolutional codes via tail-biting.Comment: 30 pages. Submitted to IEEE Transactions on Information Theory. Minor revisions after first round of review

    Approximate Linear Time ML Decoding on Tail-Biting Trellises in Two Rounds

    Full text link
    A linear time approximate maximum likelihood decoding algorithm on tail-biting trellises is prsented, that requires exactly two rounds on the trellis. This is an adaptation of an algorithm proposed earlier with the advantage that it reduces the time complexity from O(mlogm) to O(m) where m is the number of nodes in the tail-biting trellis. A necessary condition for the output of the algorithm to differ from the output of the ideal ML decoder is reduced and simulation results on an AWGN channel using tail-biting rrellises for two rate 1/2 convoluational codes with memory 4 and 6 respectively are reporte

    Feedback Communication Systems with Limitations on Incremental Redundancy

    Full text link
    This paper explores feedback systems using incremental redundancy (IR) with noiseless transmitter confirmation (NTC). For IR-NTC systems based on {\em finite-length} codes (with blocklength NN) and decoding attempts only at {\em certain specified decoding times}, this paper presents the asymptotic expansion achieved by random coding, provides rate-compatible sphere-packing (RCSP) performance approximations, and presents simulation results of tail-biting convolutional codes. The information-theoretic analysis shows that values of NN relatively close to the expected latency yield the same random-coding achievability expansion as with N=N = \infty. However, the penalty introduced in the expansion by limiting decoding times is linear in the interval between decoding times. For binary symmetric channels, the RCSP approximation provides an efficiently-computed approximation of performance that shows excellent agreement with a family of rate-compatible, tail-biting convolutional codes in the short-latency regime. For the additive white Gaussian noise channel, bounded-distance decoding simplifies the computation of the marginal RCSP approximation and produces similar results as analysis based on maximum-likelihood decoding for latencies greater than 200. The efficiency of the marginal RCSP approximation facilitates optimization of the lengths of incremental transmissions when the number of incremental transmissions is constrained to be small or the length of the incremental transmissions is constrained to be uniform after the first transmission. Finally, an RCSP-based decoding error trajectory is introduced that provides target error rates for the design of rate-compatible code families for use in feedback communication systems.Comment: 23 pages, 15 figure

    Quantum Block and Convolutional Codes from Self-orthogonal Product Codes

    Get PDF
    We present a construction of self-orthogonal codes using product codes. From the resulting codes, one can construct both block quantum error-correcting codes and quantum convolutional codes. We show that from the examples of convolutional codes found, we can derive ordinary quantum error-correcting codes using tail-biting with parameters [[42N,24N,3]]_2. While it is known that the product construction cannot improve the rate in the classical case, we show that this can happen for quantum codes: we show that a code [[15,7,3]]_2 is obtained by the product of a code [[5,1,3]]_2 with a suitable code.Comment: 5 pages, paper presented at the 2005 IEEE International Symposium on Information Theor

    A Rate-Compatible Sphere-Packing Analysis of Feedback Coding with Limited Retransmissions

    Full text link
    Recent work by Polyanskiy et al. and Chen et al. has excited new interest in using feedback to approach capacity with low latency. Polyanskiy showed that feedback identifying the first symbol at which decoding is successful allows capacity to be approached with surprisingly low latency. This paper uses Chen's rate-compatible sphere-packing (RCSP) analysis to study what happens when symbols must be transmitted in packets, as with a traditional hybrid ARQ system, and limited to relatively few (six or fewer) incremental transmissions. Numerical optimizations find the series of progressively growing cumulative block lengths that enable RCSP to approach capacity with the minimum possible latency. RCSP analysis shows that five incremental transmissions are sufficient to achieve 92% of capacity with an average block length of fewer than 101 symbols on the AWGN channel with SNR of 2.0 dB. The RCSP analysis provides a decoding error trajectory that specifies the decoding error rate for each cumulative block length. Though RCSP is an idealization, an example tail-biting convolutional code matches the RCSP decoding error trajectory and achieves 91% of capacity with an average block length of 102 symbols on the AWGN channel with SNR of 2.0 dB. We also show how RCSP analysis can be used in cases where packets have deadlines associated with them (leading to an outage probability).Comment: To be published at the 2012 IEEE International Symposium on Information Theory, Cambridge, MA, USA. Updated to incorporate reviewers' comments and add new figure
    corecore