78,345 research outputs found

    Spectral Generalized Multi-Dimensional Scaling

    Full text link
    Multidimensional scaling (MDS) is a family of methods that embed a given set of points into a simple, usually flat, domain. The points are assumed to be sampled from some metric space, and the mapping attempts to preserve the distances between each pair of points in the set. Distances in the target space can be computed analytically in this setting. Generalized MDS is an extension that allows mapping one metric space into another, that is, multidimensional scaling into target spaces in which distances are evaluated numerically rather than analytically. Here, we propose an efficient approach for computing such mappings between surfaces based on their natural spectral decomposition, where the surfaces are treated as sampled metric-spaces. The resulting spectral-GMDS procedure enables efficient embedding by implicitly incorporating smoothness of the mapping into the problem, thereby substantially reducing the complexity involved in its solution while practically overcoming its non-convex nature. The method is compared to existing techniques that compute dense correspondence between shapes. Numerical experiments of the proposed method demonstrate its efficiency and accuracy compared to state-of-the-art approaches

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Multiple Shape Registration using Constrained Optimal Control

    Get PDF
    Lagrangian particle formulations of the large deformation diffeomorphic metric mapping algorithm (LDDMM) only allow for the study of a single shape. In this paper, we introduce and discuss both a theoretical and practical setting for the simultaneous study of multiple shapes that are either stitched to one another or slide along a submanifold. The method is described within the optimal control formalism, and optimality conditions are given, together with the equations that are needed to implement augmented Lagrangian methods. Experimental results are provided for stitched and sliding surfaces
    • …
    corecore