353 research outputs found

    Exploring sparsity, self-similarity, and low rank approximation in action recognition, motion retrieval, and action spotting

    Get PDF
    This thesis consists of 4 major parts. In the first part (Chapters 1-2), we introduce the overview, motivation, and contribution of our works, and extensively survey the current literature for 6 related topics. In the second part (Chapters 3-7), we explore the concept of Self-Similarity in two challenging scenarios, namely, the Action Recognition and the Motion Retrieval. We build three-dimensional volume representations for both scenarios, and devise effective techniques that can produce compact representations encoding the internal dynamics of data. In the third part (Chapter 8), we explore the challenging action spotting problem, and propose a feature-independent unsupervised framework that is effective in spotting action under various real situations, even under heavily perturbed conditions. The final part (Chapters 9) is dedicated to conclusions and future works. For action recognition, we introduce a generic method that does not depend on one particular type of input feature vector. We make three main contributions: (i) We introduce the concept of Joint Self-Similarity Volume (Joint SSV) for modeling dynamical systems, and show that by using a new optimized rank-1 tensor approximation of Joint SSV one can obtain compact low-dimensional descriptors that very accurately preserve the dynamics of the original system, e.g. an action video sequence; (ii) The descriptor vectors derived from the optimized rank-1 approximation make it possible to recognize actions without explicitly aligning the action sequences of varying speed of execution or difference frame rates; (iii) The method is generic and can be applied using different low-level features such as silhouettes, histogram of oriented gradients (HOG), etc. Hence, it does not necessarily require explicit tracking of features in the space-time volume. Our experimental results on five public datasets demonstrate that our method produces very good results and outperforms many baseline methods. For action recognition for incomplete videos, we determine whether incomplete videos that are often discarded carry useful information for action recognition, and if so, how one can represent such mixed collection of video data (complete versus incomplete, and labeled versus unlabeled) in a unified manner. We propose a novel framework to handle incomplete videos in action classification, and make three main contributions: (i) We cast the action classification problem for a mixture of complete and incomplete data as a semi-supervised learning problem of labeled and unlabeled data. (ii) We introduce a two-step approach to convert the input mixed data into a uniform compact representation. (iii) Exhaustively scrutinizing 280 configurations, we experimentally show on our two created benchmarks that, even when the videos are extremely sparse and incomplete, it is still possible to recover useful information from them, and classify unknown actions by a graph based semi-supervised learning framework. For motion retrieval, we present a framework that allows for a flexible and an efficient retrieval of motion capture data in huge databases. The method first converts an action sequence into a self-similarity matrix (SSM), which is based on the notion of self-similarity. This conversion of the motion sequences into compact and low-rank subspace representations greatly reduces the spatiotemporal dimensionality of the sequences. The SSMs are then used to construct order-3 tensors, and we propose a low-rank decomposition scheme that allows for converting the motion sequence volumes into compact lower dimensional representations, without losing the nonlinear dynamics of the motion manifold. Thus, unlike existing linear dimensionality reduction methods that distort the motion manifold and lose very critical and discriminative components, the proposed method performs well, even when inter-class differences are small or intra-class differences are large. In addition, the method allows for an efficient retrieval and does not require the time-alignment of the motion sequences. We evaluate the performance of our retrieval framework on the CMU mocap dataset under two experimental settings, both demonstrating very good retrieval rates. For action spotting, our framework does not depend on any specific feature (e.g. HOG/HOF, STIP, silhouette, bag-of-words, etc.), and requires no human localization, segmentation, or framewise tracking. This is achieved by treating the problem holistically as that of extracting the internal dynamics of video cuboids by modeling them in their natural form as multilinear tensors. To extract their internal dynamics, we devised a novel Two-Phase Decomposition (TP-Decomp) of a tensor that generates very compact and discriminative representations that are robust to even heavily perturbed data. Technically, a Rank-based Tensor Core Pyramid (Rank-TCP) descriptor is generated by combining multiple tensor cores under multiple ranks, allowing to represent video cuboids in a hierarchical tensor pyramid. The problem then reduces to a template matching problem, which is solved efficiently by using two boosting strategies: (i) to reduce the search space, we filter the dense trajectory cloud extracted from the target video; (ii) to boost the matching speed, we perform matching in an iterative coarse-to-fine manner. Experiments on 5 benchmarks show that our method outperforms current state-of-the-art under various challenging conditions. We also created a challenging dataset called Heavily Perturbed Video Arrays (HPVA) to validate the robustness of our framework under heavily perturbed situations

    Hierarchical age estimation using enhanced facial features.

    Get PDF
    Doctor of Philosopy in Computer Science, University of KwaZulu-Natal, Westville, 2018.Ageing is a stochastic, inevitable and uncontrollable process that constantly affect shape, texture and general appearance of the human face. Humans can easily determine ones’ gender, identity and ethnicity with highest accuracy as compared to age. This makes development of automatic age estimation techniques that surpass human performance an attractive yet challenging task. Automatic age estimation requires extraction of robust and reliable age discriminative features. Local binary patterns (LBP) sensitivity to noise makes it insufficiently reliable in capturing age discriminative features. Although local ternary patterns (LTP) is insensitive to noise, it uses a single static threshold for all images regardless of varied image conditions. Local directional patterns (LDP) uses k directional responses to encode image gradient and disregards not only central pixel in the local neighborhood but also 8 k directional responses. Every pixel in an image carry subtle information. Discarding 8 k directional responses lead to lose of discriminative texture features. This study proposes two variations of LDP operator for texture extraction. Significantorientation response LDP (SOR-LDP) encodes image gradient by grouping eight directional responses into four pairs. Each pair represents orientation of an edge with respect to central reference pixel. Values in each pair are compared and the bit corresponding to the maximum value in the pair is set to 1 while the other is set to 0. The resultant binary code is converted to decimal and assigned to the central pixel as its’ SOR-LDP code. Texture features are contained in the histogram of SOR-LDP encoded image. Local ternary directional patterns (LTDP) first gets the difference between neighboring pixels and central pixel in 3 3 image region. These differential values are convolved with Kirsch edge detectors to obtain directional responses. These responses are normalized and used as probability of an edge occurring towards a respective direction. An adaptive threshold is applied to derive LTDP code. The LTDP code is split into its positive and negative LTDP codes. Histograms of negative and positive LTDP encoded images are concatenated to obtain texture feature. Regardless of there being evidence of spatial frequency processing in primary visual cortex, biologically inspired features (BIF) that model visual cortex uses only scale and orientation selectivity in feature extraction. Furthermore, these BIF are extracted using holistic (global) pooling across scale and orientations leading to lose of substantive information. This study proposes multi-frequency BIF (MF-BIF) where frequency selectivity is introduced in BIF modelling. Local statistical BIF (LS-BIF) uses local pooling within scale, orientation and frequency in n n region for BIF extraction. Using Leave-one-person-out (LOPO) validation protocol, this study investigated performance of proposed feature extractors in age estimation in a hierarchical way by performing age-group classification using Multi-layer Perceptron (MLP) followed by within age-group exact age regression using support vector regression (SVR). Mean absolute error (MAE) and cumulative score (CS) were used to evaluate performance of proposed face descriptors. Experimental results on FG-NET ageing dataset show that SOR-LDP, LTDP, MF-BIF and LS-BIF outperform state-of-the-art feature descriptors in age estimation. Experimental results show that performing gender discrimination before age-group and age estimation further improves age estimation accuracies. Shape, appearance, wrinkle and texture features are simultaneously extracted by visual system in primates for the brain to process and understand an image or a scene. However, age estimation systems in the literature use a single feature for age estimation. A single feature is not sufficient enough to capture subtle age discriminative traits due to stochastic and personalized nature of ageing. This study propose fusion of different facial features to enhance their discriminative power. Experimental results show that fusing shape, texture, wrinkle and appearance result into robust age discriminative features that achieve lower MAE compared to single feature performance

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos

    Computer vision beyond the visible : image understanding through language

    Get PDF
    In the past decade, deep neural networks have revolutionized computer vision. High performing deep neural architectures trained for visual recognition tasks have pushed the field towards methods relying on learned image representations instead of hand-crafted ones, in the seek of designing end-to-end learning methods to solve challenging tasks, ranging from long-lasting ones such as image classification to newly emerging tasks like image captioning. As this thesis is framed in the context of the rapid evolution of computer vision, we present contributions that are aligned with three major changes in paradigm that the field has recently experienced, namely 1) the power of re-utilizing deep features from pre-trained neural networks for different tasks, 2) the advantage of formulating problems with end-to-end solutions given enough training data, and 3) the growing interest of describing visual data with natural language rather than pre-defined categorical label spaces, which can in turn enable visual understanding beyond scene recognition. The first part of the thesis is dedicated to the problem of visual instance search, where we particularly focus on obtaining meaningful and discriminative image representations which allow efficient and effective retrieval of similar images given a visual query. Contributions in this part of the thesis involve the construction of sparse Bag-of-Words image representations from convolutional features from a pre-trained image classification neural network, and an analysis of the advantages of fine-tuning a pre-trained object detection network using query images as training data. The second part of the thesis presents contributions to the problem of image-to-set prediction, understood as the task of predicting a variable-sized collection of unordered elements for an input image. We conduct a thorough analysis of current methods for multi-label image classification, which are able to solve the task in an end-to-end manner by simultaneously estimating both the label distribution and the set cardinality. Further, we extend the analysis of set prediction methods to semantic instance segmentation, and present an end-to-end recurrent model that is able to predict sets of objects (binary masks and categorical labels) in a sequential manner. Finally, the third part of the dissertation takes insights learned in the previous two parts in order to present deep learning solutions to connect images with natural language in the context of cooking recipes and food images. First, we propose a retrieval-based solution in which the written recipe and the image are encoded into compact representations that allow the retrieval of one given the other. Second, as an alternative to the retrieval approach, we propose a generative model to predict recipes directly from food images, which first predicts ingredients as sets and subsequently generates the rest of the recipe one word at a time by conditioning both on the image and the predicted ingredients.En l'última dècada, les xarxes neuronals profundes han revolucionat el camp de la visió per computador. Els resultats favorables obtinguts amb arquitectures neuronals profundes entrenades per resoldre tasques de reconeixement visual han causat un canvi de paradigma cap al disseny de mètodes basats en representacions d'imatges apreses de manera automàtica, deixant enrere les tècniques tradicionals basades en l'enginyeria de representacions. Aquest canvi ha permès l'aparició de tècniques basades en l'aprenentatge d'extrem a extrem (end-to-end), capaces de resoldre de manera efectiva molts dels problemes tradicionals de la visió per computador (e.g. classificació d'imatges o detecció d'objectes), així com nous problemes emergents com la descripció textual d'imatges (image captioning). Donat el context de la ràpida evolució de la visió per computador en el qual aquesta tesi s'emmarca, presentem contribucions alineades amb tres dels canvis més importants que la visió per computador ha experimentat recentment: 1) la reutilització de representacions extretes de models neuronals pre-entrenades per a tasques auxiliars, 2) els avantatges de formular els problemes amb solucions end-to-end entrenades amb grans bases de dades, i 3) el creixent interès en utilitzar llenguatge natural en lloc de conjunts d'etiquetes categòriques pre-definits per descriure el contingut visual de les imatges, facilitant així l'extracció d'informació visual més enllà del reconeixement de l'escena i els elements que la composen La primera part de la tesi està dedicada al problema de la cerca d'imatges (image retrieval), centrada especialment en l'obtenció de representacions visuals significatives i discriminatòries que permetin la recuperació eficient i efectiva d'imatges donada una consulta formulada amb una imatge d'exemple. Les contribucions en aquesta part de la tesi inclouen la construcció de representacions Bag-of-Words a partir de descriptors locals obtinguts d'una xarxa neuronal entrenada per classificació, així com un estudi dels avantatges d'utilitzar xarxes neuronals per a detecció d'objectes entrenades utilitzant les imatges d'exemple, amb l'objectiu de millorar les capacitats discriminatòries de les representacions obtingudes. La segona part de la tesi presenta contribucions al problema de predicció de conjunts a partir d'imatges (image to set prediction), entès com la tasca de predir una col·lecció no ordenada d'elements de longitud variable donada una imatge d'entrada. En aquest context, presentem una anàlisi exhaustiva dels mètodes actuals per a la classificació multi-etiqueta d'imatges, que són capaços de resoldre la tasca de manera integral calculant simultàniament la distribució probabilística sobre etiquetes i la cardinalitat del conjunt. Seguidament, estenem l'anàlisi dels mètodes de predicció de conjunts a la segmentació d'instàncies semàntiques, presentant un model recurrent capaç de predir conjunts d'objectes (representats per màscares binàries i etiquetes categòriques) de manera seqüencial. Finalment, la tercera part de la tesi estén els coneixements apresos en les dues parts anteriors per presentar solucions d'aprenentatge profund per connectar imatges amb llenguatge natural en el context de receptes de cuina i imatges de plats cuinats. En primer lloc, proposem una solució basada en algoritmes de cerca, on la recepta escrita i la imatge es codifiquen amb representacions compactes que permeten la recuperació d'una donada l'altra. En segon lloc, com a alternativa a la solució basada en algoritmes de cerca, proposem un model generatiu capaç de predir receptes (compostes pels seus ingredients, predits com a conjunts, i instruccions) directament a partir d'imatges de menjar.Postprint (published version

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Generative Interpretation of Medical Images

    Get PDF

    一人称視点映像からの手操作解析に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)国立情報学研究所教授 佐藤 真一, 東京大学教授 佐藤 洋一, 東京大学教授 相澤 清晴, 東京大学准教授 山崎 俊彦, 東京大学准教授 大石 岳史University of Tokyo(東京大学

    Enabling Auditing and Intrusion Detection of Proprietary Controller Area Networks

    Get PDF
    The goal of this dissertation is to provide automated methods for security researchers to overcome ‘security through obscurity’ used by manufacturers of proprietary Industrial Control Systems (ICS). `White hat\u27 security analysts waste significant time reverse engineering these systems\u27 opaque network configurations instead of performing meaningful security auditing tasks. Automating the process of documenting proprietary protocol configurations is intended to improve independent security auditing of ICS networks. The major contributions of this dissertation are a novel approach for unsupervised lexical analysis of binary network data flows and analysis of the time series data extracted as a result. We demonstrate the utility of these methods using Controller Area Network (CAN) data sampled from passenger vehicles

    Event Structure In Vision And Language

    Get PDF
    Our visual experience is surprisingly rich: We do not only see low-level properties such as colors or contours; we also see events, or what is happening. Within linguistics, the examination of how we talk about events suggests that relatively abstract elements exist in the mind which pertain to the relational structure of events, including general thematic roles (e.g., Agent), Causation, Motion, and Transfer. For example, “Alex gave Jesse flowers” and “Jesse gave Alex flowers” both refer to an event of transfer, with the directionality of the transfer having different social consequences. The goal of the present research is to examine the extent to which abstract event information of this sort (event structure) is generated in visual perceptual processing. Do we perceive this information, just as we do with more ‘traditional’ visual properties like color and shape? In the first study (Chapter 2), I used a novel behavioral paradigm to show that event roles – who is acting on whom – are rapidly and automatically extracted from visual scenes, even when participants are engaged in an orthogonal task, such as color or gender identification. In the second study (Chapter 3), I provided functional magnetic resonance (fMRI) evidence for commonality in content between neural representations elicited by static snapshots of actions and by full, dynamic action sequences. These two studies suggest that relatively abstract representations of events are spontaneously extracted from sparse visual information. In the final study (Chapter 4), I return to language, the initial inspiration for my investigations of events in vision. Here I test the hypothesis that the human brain represents verbs in part via their associated event structures. Using a model of verbs based on event-structure semantic features (e.g., Cause, Motion, Transfer), it was possible to successfully predict fMRI responses in language-selective brain regions as people engaged in real-time comprehension of naturalistic speech. Taken together, my research reveals that in both perception and language, the mind rapidly constructs a representation of the world that includes events with relational structure
    corecore