25 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    CUDA-Optimized GPU Acceleration of 3GPP 3D Channel Model Simulations for 5G Network Planning

    Get PDF
    Simulation of massive multiple-input multiple-output (MIMO) channel models is becoming increasingly important for testing and validation of fifth-generation new radio (5G NR) wireless networks and beyond. However, simulation performance tends to be limited when modeling a large number of antenna elements combined with a complex and realistic representation of propagation conditions. In this paper, we propose an efficient implementation of a 3rd Generation Partnership Project (3GPP) three-dimensional (3D) channel model, specifically designed for graphics processing unit (GPU) platforms, with the goal of minimizing the computational time required for channel simulation. The channel model is highly parameterized to encompass a wide range of configurations required for real-world optimized 5G NR network deployments. We use several compute unified device architecture (CUDA)-based optimization techniques to exploit the parallelism and memory hierarchy of the GPU. Experimental data show that the developed system achieves an overall speedup of about 240× compared to the original C++ model executed on an Intel processor. Compared to a design previously accelerated on a datacenter-class field programmable gate array (FPGA), the GPU design has 33.3 % higher single precision performance, but for 7.5 % higher power consumption. The proposed GPU accelerator can provide fast and accurate channel simulations for 5G NR network planning and optimization

    Survey of millimeter-wave propagation measurements and models in indoor environments

    Get PDF
    The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond
    corecore