2,063 research outputs found

    Brain image clustering by wavelet energy and CBSSO optimization algorithm

    Get PDF
    Previously, the diagnosis of brain abnormality was significantly important in the saving of social and hospital resources. Wavelet energy is known as an effective feature detection which has great efficiency in different utilities. This paper suggests a new method based on wavelet energy to automatically classify magnetic resonance imaging (MRI) brain images into two groups (normal and abnormal), utilizing support vector machine (SVM) classification based on chaotic binary shark smell optimization (CBSSO) to optimize the SVM weights. The results of the suggested CBSSO-based KSVM are compared favorably to several other methods in terms of better sensitivity and authenticity. The proposed CAD system can additionally be utilized to categorize the images with various pathological conditions, types, and illness modes

    Image multi-level-thresholding with Mayfly optimization

    Get PDF
    Image thresholding is a well approved pre-processing methodology and enhancing the image information based on a chosen threshold is always preferred. This research implements the mayfly optimization algorithm (MOA) based image multi-level-thresholding on a class of benchmark images of dimension 512x512x1. The MOA is a novel methodology with the algorithm phases, such as; i) Initialization, ii) Exploration with male-mayfly (MM), iii) Exploration with female-mayfly (FM), iv) Offspring generation and, v) Termination. This algorithm implements a strict two-step search procedure, in which every Mayfly is forced to attain the global best solution. The proposed research considers the threshold value from 2 to 5 and the superiority of the result is confirmed by computing the essential Image quality measures (IQM). The performance of MOA is also compared and validated against the other procedures, such as particle-swarm-optimization (PSO), bacterial foraging optimization(BFO), firefly-algorithm(FA), bat algorithm (BA), cuckoo search(CS) and moth-flame optimization (MFO) and the attained p-value of Wilcoxon rank test confirmed the superiority of the MOA compared with other algorithms considered in this wor

    A Study on RGB Image Multi-Thresholding using Kapur/Tsallis Entropy and Moth-Flame Algorithm

    Get PDF
    In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, widely implemented to enhance the information in a class of gray/RGB class pictures. The thresholding helps to enhance the image by grouping the similar pixels based on the chosen thresholds. In this research, an entropy assisted threshold is implemented for the benchmark RGB images. The aim of this work is to examine the thresholding performance of well-known entropy functions, such as Kapur’s and Tsallis for a chosen image threshold. This work employs a Moth-Flame-Optimization (MFO) algorithm to support the automatic identification of the finest threshold (Th) on the benchmark RGB image for a chosen threshold value (Th=2,3,4,5). After getting the threshold image, a comparison is performed against its original picture and the necessary Picture-Quality-Values (PQV) is computed to confirm the merit of the proposed work. The experimental investigation is demonstrated using benchmark images with various dimensions and the outcome of this study confirms that the MFO helps to get a satisfactory result compared to the other heuristic algorithms considered in this study

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    Intelligent Leukaemia Diagnosis with Bare-Bones PSO based Feature Optimization

    Get PDF
    In this research, we propose an intelligent decision support system for acute lymphoblastic leukaemia (ALL) diagnosis using microscopic images. Two Bare-bones Particle Swarm Optimization (BBPSO) algorithms are proposed to identify the most significant discriminative characteristics of healthy and blast cells to enable efficient ALL classification. The first BBPSO variant incorporates accelerated chaotic search mechanisms of food chasing and enemy avoidance to diversify the search and mitigate the premature convergence of the original BBPSO algorithm. The second BBPSO variant exhibits both of the abovementioned new search mechanisms in a subswarm-based search. Evaluated with the ALL-IDB2 database, both proposed algorithms achieve superior geometric mean performances of 94.94% and 96.25%, respectively, and outperform other metaheuristic search and related methods significantly for ALL classification

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    • …
    corecore