2,211 research outputs found

    Categorical frameworks for generalized functions

    Full text link
    We tackle the problem of finding a suitable categorical framework for generalized functions used in mathematical physics for linear and non-linear PDEs. We are looking for a Cartesian closed category which contains both Schwartz distributions and Colombeau generalized functions as natural objects. We study Fr\"olicher spaces, diffeological spaces and functionally generated spaces as frameworks for generalized functions. The latter are similar to Fr\"olicher spaces, but starting from locally defined functionals. Functionally generated spaces strictly lie between Fr\"olicher spaces and diffeological spaces, and they form a complete and cocomplete Cartesian closed category. We deeply study functionally generated spaces (and Fr\"olicher spaces) as a framework for Schwartz distributions, and prove that in the category of diffeological spaces, both the special and the full Colombeau algebras are smooth differential algebras, with a smooth embedding of Schwartz distributions and smooth pointwise evaluations of Colombeau generalized functions.Comment: 38 page

    GSOS for non-deterministic processes with quantitative aspects

    Get PDF
    Recently, some general frameworks have been proposed as unifying theories for processes combining non-determinism with quantitative aspects (such as probabilistic or stochastically timed executions), aiming to provide general results and tools. This paper provides two contributions in this respect. First, we present a general GSOS specification format (and a corresponding notion of bisimulation) for non-deterministic processes with quantitative aspects. These specifications define labelled transition systems according to the ULTraS model, an extension of the usual LTSs where the transition relation associates any source state and transition label with state reachability weight functions (like, e.g., probability distributions). This format, hence called Weight Function SOS (WFSOS), covers many known systems and their bisimulations (e.g. PEPA, TIPP, PCSP) and GSOS formats (e.g. GSOS, Weighted GSOS, Segala-GSOS, among others). The second contribution is a characterization of these systems as coalgebras of a class of functors, parametric on the weight structure. This result allows us to prove soundness of the WFSOS specification format, and that bisimilarities induced by these specifications are always congruences.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    An Algebraic Characterisation of Concurrent Composition

    Full text link
    We give an algebraic characterization of a form of synchronized parallel composition allowing for true concurrency, using ideas based on Peter Landin's "Program-Machine Symmetric Automata Theory".Comment: This is an old technical report from 1981. I submitted it to a special issue of HOSC in honour of Peter Landin, as explained in the Prelude, added in 2008. However, at an advanced stage, the handling editor became unresponsive, and the paper was never published. I am making it available via the arXiv for the same reasons given in the Prelud

    Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Full text link
    This paper contains the first written exposition of some ideas (announced in a previous survey) on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.Comment: Special Issue "Noncommutative Spaces and Fields
    corecore