16,613 research outputs found

    A sufficient condition for the existence of an anti-directed 2-factor in a directed graph

    Get PDF
    Let D be a directed graph with vertex set V and order n. An anti-directed hamiltonian cycle H in D is a hamiltonian cycle in the graph underlying D such that no pair of consecutive arcs in H form a directed path in D. An anti-directed 2-factor in D is a vertex-disjoint collection of anti-directed cycles in D that span V. It was proved in [3] that if the indegree and the outdegree of each vertex of D is greater than (9/16)n then D contains an anti-directed hamilton cycle. In this paper we prove that given a directed graph D, the problem of determining whether D has an anti-directed 2-factor is NP-complete, and we use a proof technique similar to the one used in [3] to prove that if the indegree and the outdegree of each vertex of D is greater than (24/46)n then D contains an anti-directed 2-factor

    Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights

    Full text link
    Let GG be a graph and S\mathcal {S} be a subset of ZZ. A vertex-coloring S\mathcal {S}-edge-weighting of GG is an assignment of weight ss by the elements of S\mathcal {S} to each edge of GG so that adjacent vertices have different sums of incident edges weights. It was proved that every 3-connected bipartite graph admits a vertex-coloring {1,2}\{1,2\}-edge-weighting (Lu, Yu and Zhang, (2011) \cite{LYZ}). In this paper, we show that the following result: if a 3-edge-connected bipartite graph GG with minimum degree δ\delta contains a vertex uV(G)u\in V(G) such that dG(u)=δd_G(u)=\delta and GuG-u is connected, then GG admits a vertex-coloring S\mathcal {S}-edge-weighting for S{{0,1},{1,2}}\mathcal {S}\in \{\{0,1\},\{1,2\}\}. In particular, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring S\mathcal {S}-edge-weighting for S{{0,1},{1,2}}\mathcal {S}\in \{\{0,1\},\{1,2\}\}. The bound is sharp, since there exists a family of infinite bipartite graphs which are 2-connected and do not admit vertex-coloring {1,2}\{1,2\}-edge-weightings or vertex-coloring {0,1}\{0,1\}-edge-weightings.Comment: In this paper, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring S-edge-weighting for S\in {{0,1},{1,2}

    Hamilton cycles, minimum degree and bipartite holes

    Full text link
    We present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large ``bipartite hole`` (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chv\'atal and Erd\H{o}s. In detail, an (s,t)(s, t)-bipartite-hole in a graph GG consists of two disjoint sets of vertices SS and TT with S=s|S|= s and T=t|T|=t such that there are no edges between SS and TT; and α~(G)\widetilde{\alpha}(G) is the maximum integer rr such that GG contains an (s,t)(s, t)-bipartite-hole for every pair of non-negative integers ss and tt with s+t=rs + t = r. Our central theorem is that a graph GG with at least 33 vertices is Hamiltonian if its minimum degree is at least α~(G)\widetilde{\alpha}(G). From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of kk edge-disjoint Hamilton cycles. We see that for dense random graphs G(n,p)G(n,p), the probability of failing to contain many edge-disjoint Hamilton cycles is (1p)(1+o(1))n(1 - p)^{(1 + o(1))n}. Finally, we discuss the complexity of calculating and approximating α~(G)\widetilde{\alpha}(G)

    On the Minimum Degree up to Local Complementation: Bounds and Complexity

    Full text link
    The local minimum degree of a graph is the minimum degree reached by means of a series of local complementations. In this paper, we investigate on this quantity which plays an important role in quantum computation and quantum error correcting codes. First, we show that the local minimum degree of the Paley graph of order p is greater than sqrt{p} - 3/2, which is, up to our knowledge, the highest known bound on an explicit family of graphs. Probabilistic methods allows us to derive the existence of an infinite number of graphs whose local minimum degree is linear in their order with constant 0.189 for graphs in general and 0.110 for bipartite graphs. As regards the computational complexity of the decision problem associated with the local minimum degree, we show that it is NP-complete and that there exists no k-approximation algorithm for this problem for any constant k unless P = NP.Comment: 11 page
    corecore