48 research outputs found

    FROM IRREDUNDANCE TO ANNIHILATION: A BRIEF OVERVIEW OF SOME DOMINATION PARAMETERS OF GRAPHS

    Get PDF
    Durante los últimos treinta años, el concepto de dominación en grafos ha levantado un interés impresionante. Una bibliografía reciente sobre el tópico contiene más de 1200 referencias y el número de definiciones nuevas está creciendo continuamente. En vez de intentar dar un catálogo de todas ellas, examinamos las nociones más clásicas e importantes (tales como dominación independiente, dominación irredundante, k-cubrimientos, conjuntos k-dominantes, conjuntos Vecindad Perfecta, ...) y algunos de los resultados más significativos.   PALABRAS CLAVES: Teoría de grafos, Dominación.   ABSTRACT During the last thirty years, the concept of domination in graphs has generated an impressive interest. A recent bibliography on the subject contains more than 1200 references and the number of new definitions is continually increasing. Rather than trying to give a catalogue of all of them, we survey the most classical and important notions (as independent domination, irredundant domination, k-coverings, k-dominating sets, Perfect Neighborhood sets, ...) and some of the most significant results.   KEY WORDS: Graph theory, Domination

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    Domination, independence and irredundance with respect to additive induced-hereditary properties

    Get PDF
    AbstractFor a given graph G a subset X of vertices of G is called a dominating (irredundant) set with respect to additive induced-hereditary property P, if the subgraph induced by X has the property P and X is a dominating (an irredundant) set. A set S is independent with respect to P, if [S]∈P.We give some properties of dominating, irredundant and independent sets with respect to P and some relations between corresponding graph invariants. This concept of domination and irredundance generalizes acyclic domination and acyclic irredundance given by Hedetniemi et al. (Discrete Math. 222 (2000) 151)

    Some inequalities about connected domination number

    Get PDF
    AbstractLet G = (V,E) be a graph. In this note, γc, ir, γ, i, β0, Γ, IR denote the connected domination number, the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number, respectively. We prove that γc ⩽ 3 ir − 2 for a connected graph G. Thus, an open problem in Hedetniemi and Laskar (1984) discuss further some relations between γc and γ, β0, Γ, IR, respectively

    Total irredundance in graphs

    Get PDF
    AbstractA set S of vertices in a graph G is called a total irredundant set if, for each vertex v in G,v or one of its neighbors has no neighbor in S−{v}. We investigate the minimum and maximum cardinalities of maximal total irredundant sets

    On k-Equivalence Domination in Graphs

    Get PDF
    Let G = (V,E) be a graph. A subset S of V is called an equivalence set if every component of the induced subgraph (S) is complete. If further at least one component of (V − S) is not complete, then S is called a Smarandachely equivalence set

    Towards a new framework for domination

    Get PDF
    Dominating concepts constitute a cornerstone in Graph Theory. Part of the efforts in the field have been focused in finding different mathematical frameworks where domination notions naturally arise, providing new points of view about the matter. In this paper, we introduce one of these frameworks based in convexity. The main idea consists of defining a convexity in a graph, already used in image processing, for which the usual parameters of convexity are closely related to domination parameters. Moreover, the Helly number of this convexity may be viewed as a new domination parameter whose study would be of interest

    Parameters related to fractional domination in graphs.

    Get PDF
    Thesis (M.Sc.)-University of Natal, 1995.The use of characteristic functions to represent well-known sets in graph theory such as dominating, irredundant, independent, covering and packing sets - leads naturally to fractional versions of these sets and corresponding fractional parameters. Let S be a dominating set of a graph G and f : V(G)~{0,1} the characteristic function of that set. By first translating the restrictions which define a dominating set from a set-based to a function-based form, and then allowing the function f to map the vertex set to the unit closed interval, we obtain the fractional generalisation of the dominating set S. In chapter 1, known domination-related parameters and their fractional generalisations are introduced, relations between them are investigated, and Gallai type results are derived. Particular attention is given to graphs with symmetry and to products of graphs. If instead of replacing the function f : V(G)~{0,1} with a function which maps the vertex set to the unit closed interval we introduce a function f' which maps the vertex set to {0, 1, ... ,k} (where k is some fixed, non-negative integer) and a corresponding change in the restrictions on the dominating set, we obtain a k-dominating function. In chapter 2 corresponding k-parameters are considered and are related to the classical and fractional parameters. The calculations of some well known fractional parameters are expressed as optimization problems involving the k- parameters. An e = 1 function is a function f : V(G)~[0,1] which obeys the restrictions that (i) every non-isolated vertex u is adjacent to some vertex v such that f(u)+f(v) = 1, and every isolated vertex w has f(w) = 1. In chapter 3 a theory of e = 1 functions and parameters is developed. Relationships are traced between e = 1 parameters and those previously introduced, some Gallai type results are derived for the e = 1 parameters, and e = 1 parameters are determined for several classes of graphs. The e = 1 theory is applied to derive new results about classical and fractional domination parameters
    corecore