2,430 research outputs found

    New Full-Diversity Space-Time-Frequency Block Codes with Simplified Decoders for MIMO-OFDM Systems

    Get PDF
    Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is known as a promising solution for wideband wireless communications. This is why it has been considered as a powerful candidate for IEEE 802.11n standard. Numerous space-frequency block codes (SFBCs) and space-time- frequency block codes (STFBCs) have been proposed so far for implementing MIMO-OFDM systems. In this paper, at first we propose new full-diversity STFBCs with high coding gain in time-varying channels; the construct method for this structure is using orthogonal space-time block code for any arbitrary number of transmit antenna and then we propose a decoder with linear complexity for our proposed coding scheme. Simulation results verify that the proposed STFBCs outperform other recently published STFBCs

    Four-Group Decodable Space-Time Block Codes

    Full text link
    Two new rate-one full-diversity space-time block codes (STBC) are proposed. They are characterized by the \emph{lowest decoding complexity} among the known rate-one STBC, arising due to the complete separability of the transmitted symbols into four groups for maximum likelihood detection. The first and the second codes are delay-optimal if the number of transmit antennas is a power of 2 and even, respectively. The exact pair-wise error probability is derived to allow for the performance optimization of the two codes. Compared with existing low-decoding complexity STBC, the two new codes offer several advantages such as higher code rate, lower encoding/decoding delay and complexity, lower peak-to-average power ratio, and better performance.Comment: 1 figure. Accepted for publication in IEEE Trans. on Signal Processin

    Achieving Low-Complexity Maximum-Likelihood Detection for the 3D MIMO Code

    Get PDF
    The 3D MIMO code is a robust and efficient space-time block code (STBC) for the distributed MIMO broadcasting but suffers from high maximum-likelihood (ML) decoding complexity. In this paper, we first analyze some properties of the 3D MIMO code to show that the 3D MIMO code is fast-decodable. It is proved that the ML decoding performance can be achieved with a complexity of O(M^{4.5}) instead of O(M^8) in quasi static channel with M-ary square QAM modulations. Consequently, we propose a simplified ML decoder exploiting the unique properties of 3D MIMO code. Simulation results show that the proposed simplified ML decoder can achieve much lower processing time latency compared to the classical sphere decoder with Schnorr-Euchner enumeration

    A New Low-Complexity Decodable Rate-1 Full-Diversity 4 x 4 STBC with Nonvanishing Determinants

    Full text link
    Space-time coding techniques have become common-place in wireless communication standards as they provide an effective way to mitigate the fading phenomena inherent in wireless channels. However, the use of Space-Time Block Codes (STBCs) increases significantly the optimal detection complexity at the receiver unless the low complexity decodability property is taken into consideration in the STBC design. In this letter we propose a new low-complexity decodable rate-1 full-diversity 4 x 4 STBC. We provide an analytical proof that the proposed code has the Non-Vanishing-Determinant (NVD) property, a property that can be exploited through the use of adaptive modulation which changes the transmission rate according to the wireless channel quality. We compare the proposed code to existing low-complexity decodable rate-1 full-diversity 4 x 4 STBCs in terms of performance over quasi-static Rayleigh fading channels, detection complexity and Peak-to-Average Power Ratio (PAPR). Our code is found to provide the best performance and the smallest PAPR which is that of the used QAM constellation at the expense of a slight increase in detection complexity w.r.t. certain previous codes but this will only penalize the proposed code for high-order QAM constellations.Comment: 5 pages, 3 figures, and 1 table; IEEE Transactions on Wireless Communications, Vol. 10, No. 8, AUGUST 201

    DMT Optimality of LR-Aided Linear Decoders for a General Class of Channels, Lattice Designs, and System Models

    Full text link
    The work identifies the first general, explicit, and non-random MIMO encoder-decoder structures that guarantee optimality with respect to the diversity-multiplexing tradeoff (DMT), without employing a computationally expensive maximum-likelihood (ML) receiver. Specifically, the work establishes the DMT optimality of a class of regularized lattice decoders, and more importantly the DMT optimality of their lattice-reduction (LR)-aided linear counterparts. The results hold for all channel statistics, for all channel dimensions, and most interestingly, irrespective of the particular lattice-code applied. As a special case, it is established that the LLL-based LR-aided linear implementation of the MMSE-GDFE lattice decoder facilitates DMT optimal decoding of any lattice code at a worst-case complexity that grows at most linearly in the data rate. This represents a fundamental reduction in the decoding complexity when compared to ML decoding whose complexity is generally exponential in rate. The results' generality lends them applicable to a plethora of pertinent communication scenarios such as quasi-static MIMO, MIMO-OFDM, ISI, cooperative-relaying, and MIMO-ARQ channels, in all of which the DMT optimality of the LR-aided linear decoder is guaranteed. The adopted approach yields insight, and motivates further study, into joint transceiver designs with an improved SNR gap to ML decoding.Comment: 16 pages, 1 figure (3 subfigures), submitted to the IEEE Transactions on Information Theor

    A New Low-Complexity Decodable Rate-5/4 STBC for Four Transmit Antennas with Nonvanishing Determinants

    Full text link
    The use of Space-Time Block Codes (STBCs) increases significantly the optimal detection complexity at the receiver unless the low-complexity decodability property is taken into consideration in the STBC design. In this paper we propose a new low-complexity decodable rate-5/4 full-diversity 4 x 4 STBC. We provide an analytical proof that the proposed code has the Non-Vanishing-Determinant (NVD) property, a property that can be exploited through the use of adaptive modulation which changes the transmission rate according to the wireless channel quality. We compare the proposed code to the best existing low-complexity decodable rate-5/4 full-diversity 4 x 4 STBC in terms of performance over quasi-static Rayleigh fading channels, worst- case complexity, average complexity, and Peak-to-Average Power Ratio (PAPR). Our code is found to provide better performance, lower average decoding complexity, and lower PAPR at the expense of a slight increase in worst-case decoding complexity.Comment: 5 pages, 2 figures and 1 table; IEEE Global Telecommunications Conference (GLOBECOM 2011), 201

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit
    corecore